
	 Python Character Set	 	 Python Tokens
	 Data Types	 	 Find Data Type
	 Errors in Python Programs	 	 Some More Programs

95%Topics Covered

Python BRIDGE
COURSE

Python 1

  PYTHON CHARACTER SET
A set of valid characters recognised by a language is called a character set. The characters used
in the Python source program belong to the Unicode standard. The characters in Python are
grouped into the following categories:

	� Alphabet: A to Z (uppercase), a to z (lowercase)

	� Digits: 0 to 9

	� Special characters (:) colon () + _- * / /\ ̂ & % # $ {} []! _(underscore) >< ?@ , ; etc. (white space,
blank space, horizontal tab (), carriage return, new line, form feed)

Python can process any of the ASCII and Unicode characters as data or as literals.

  PYTHON TOKENS
A token is the smallest element of a Python program that is meaningful to the interpreter. You
have learned about some tokens in the previous class. Now learn more about them in detail.

CONSTANTSIDENTIFIERS PUNCTUATORSKEYWORDS OPERATORS

PYTHON TOKENS

Bridge Course - Grade 82

IDENTIFIERS
An identifier is a sequence of characters taken from the Python character set. It refers to variables,
functions and arrays. The rules for identifiers are:

	 Only letters, digits and an underscore are permitted.

	 Must start with a letter between A to Z or between a to z or an underscore (_).

	 Uppercase and lowercase are distinct because Python is a case sensitive language.

	 Special characters are not allowed.

Some examples of valid identifiers are Myvar, myvar_1, Sum_of_the_numbers, PASS and _Sum.

Some examples of invalid identifiers are False, Var^2, Var 1 and 1var.

KEYWORDS
Keywords are the reserved words. They are predefined words. Keywords cannot be used as an
identifier.

Some commonly used keywords in Python are given below:

False	 assert	 del	 for	 in	 or	 while
None	 break	 elif	 from	 is	 pass	 with
True	 class	 else	 global	 lambda	 raise	 yield
and	 continue	 except	 if	 nonlocal	 return	 async
as	 def	 finally	 import	 not	 try	 await

CONSTANTS OR LITERALS
Constants are fixed values that do not change during the execution of a program. Literals are the
type of constant. Literals refer to any number, text and other information that represents a value.
Python supports the following literals:

0, 1, 2, -1, -2

89675

3.14

12j

True or False

None

u“hello”

[5,6,7]

Integer literals

Long literals

Floating-point literals

Complex literals

Boolean literals

Special literals

Unicode literals

List literals

“hello”, ‘12345’String literals

Literals Example

Python 3

OPERATORS
Operators are special symbols that are used to perform specific operation on operands and give
a meaningful result. Operands are the data involved in the mathematical operation, and may be
stored in variables and constants.

Combination of variables, constants and operators makes an expression.

Expression: a 	 +	 5	 =	 20

Variable Constant

Operator Operator

Now learn about various types of operators.

Arithmetic Operators

These operators are used to do arithmetical operations.

Addition

Subtraction

Multiplication

Division

Modulus

Exponentiation

Floor or Integer
division

+

–

*

/

%

**

//

Adds values on either
side of the operator

x + y 10

Subtracts right hand
operand from left hand
operand

x – y 4

Multiplies values on
either side of the
operator

x * y 21

Divides left hand
operand by right hand
operand

x / y 2.3333335

Divides left hand
operand by right hand
operand and returns
the remainder

x % y 1

Performs exponential
(power) calculation on
operands

x ** y 343

Divides and returns the
integer part from the
result.

x // y 2

Operator Name Description
Example

(x=7 and y=3) Output

Bridge Course - Grade 84

Relational Operators or Comparison Operators

These operators are used to compare two values to one another.

Equal

Not equal

Greater than

Less than

Greater than
or equal to

Less than or
equal to

==

!=

>

<

>=

<=

It checks if the values of two
operands are equal or not. If
the values are equal, then the
condition becomes true.

x == y False

It checks if the values of two
operands are equal or not. If
the values are not equal, then
the condition becomes true.

x != y True

It checks if the value of left
operand is greater than the
value of the right operand.
If yes, then the condition
becomes true.

x > y True

It checks if the value of the
left operand is less than the
value of the right operand.
If yes, then the condition
becomes true.

x < y False

It checks if the value of the
left operand is greater than
or equal to the value of right
operand. If yes, then the
condition becomes true.

x >= y True

It checks if the value of the
left operand is less than or
equal to the value of the
right operand. If yes, then the
condition becomes true.

x <= y False

Operator Name Description
Example

(x=8 and y=6) Output

Logical Operators

These operators are used to make decision on two conditions or more than two condition. Logical
Operators are used with boolean values and return boolean value as output.

Python 5

AND

OR

NOT

and

or

not

It returns true if both

operands are true.
(x < 5) and (x < 10) True

It returns true if one of the

operands is true.
(x < 5) or (x < 2) True

It reverses the result, and

returns false, if the result is

true or vice versa.

not [(x < 5) and

(x < 10)]
False

Operator Name Description Example (x=2) Output

Assignment Operators
These operators are used to assign value to a variable.

Assignment

Addition
assignment

Subtraction
assignment

=

+=

–=

It assigns the value of the operand on the right
side to the left side operand.

x = 6

It adds the right operand to the left operand
and assigns the result to the left operand. x+=3 is
equivalent to x=x+3.

x += 3

x=9

It subtracts the right operand from the left operand
and assigns the result to the left operand. x–=3 is
equivalent to x=x–3.

x –= 3

x=3

Operator Name Description
Example &

Output
(x=6)

Multiplication
assignment

Division
assignment

Floor division
assignment

Remainder
assignment

Exponentiation
assignment

*=

/=

//=

%=

**=

It multiplies the right operand with the left operand
and assigns the result to the left operand. x*=3 is
equivalent to x=x*3.

x *= 3

x=18

It divides the left operand with the right operand
and assigns the result to the left operand. x/=3 is
equivalent to x=x/3.

It performs floor division on operators and assigns
the value to the left operand. x//=3 is equivalent to
x=x//3.

x /= 3

2.0

x //= 3

x=2

It takes the modulus of two operands and assigns the
result to the left operand. x%=3 is equivalent to x=x%3.

It performs exponential (power) calculations
on operators and assigns the value to the left

x %= 3
x=0

x **= 3

x=216

Bridge Course - Grade 86

Operator Precedence

An arithmetic expression without parentheses will be evaluated from left to right using the rule of
precedence of operators.

()

**

*, /, %, //

+, –

==, !=, >, <, >=, <=

=, +=, -=, *=, /=, %=, **=, //=

First

Second

Third

Fourth

Fifth

Sixth

Parenthesis

Exponent

Multiplication, Division, Modulus, Floor Division

Addition, Subtraction

Comparison

Assignment

Priority Operator Name

and, or, notSeventh Logical

Write a program to use operators in Python.

Which type of applications can be developed in Python?

PUNCTUATORS

Punctuators are also called separators as they are used to separate lines of codes, variables, etc.
The following characters are used as punctuators in Python: ` # \ () [] {} @ , : . ‘ =

	� Brackets [] indicate list.

	� Parentheses () indicate tuples, function calls, function parameters for grouping expressions
etc.

	 Comma (,) is used as a separator in a function argument list or variable declaration.

	 Colon (:) indicates a labelled statement or conditional operator symbol.

	 Equal sign (=) is used to initialise the value of variable.

Python 7

  DATA TYPES
Data types are used to define the type of value a data can contain. Each variable in Python is associated
with some data type. Each data type requires a different amount of memory and has some specific
operations performed on it. Data types are divided into two categories as shown below:

Numbers Sequence

StringInteger/long

TupleDictionaryComplex

ListsFloat

Data Types

Sets Boolean

NUMBER

Integer numbers, floating-point numbers and complex numbers are the built-in numeric data
types of Python.

Integer/Long

Integers are whole numbers consisting of + or – signs. They do not have decimal places between
them. For example, 87, -3 are called integer numbers.

Float

Float data type represents numbers that contain a decimal point. For example, 0.6, -3.257 are
called floating-point numbers. These numbers can also be written using ‘e’ or ‘E’ to represent the
power 10.

Complex

A complex is a number that is written in the form a+ bj or a+bJ. It is represented as follows:
(real part) + (imaginary part) j.

SETS

Set is a mutable, unordered collection of values, of any type, with no duplicate element.

Bridge Course - Grade 88

Dictionary

A dictionary is a collection of key-value pairs separated by commas (,) and enclosed within curly
braces ({}). Each key is unique and is followed by a colon (:) that separates it from its corresponding
value. For example: {"name": "Anairya", "age": 10, "grade": "4th"}.

SEQUENCE
A sequence is an ordered collection of items of similar or different data types. The three types of
sequence data types are Strings, Lists and Tuples.

Strings

A string is a sequence of one or more characters put in single quotes, double quotes or triple quotes
which is used to represent text-based information. The quotes are not a part of the string. For
example, "hello","Orange Education", 'Amit', '365'.

List

A list is a collection of data elements separated by comma (,) and enclosed within square
brackets []. We can also create a list with the elements that are the same or have different data
types. For example, [1,2,5], ['HELLO',45,87.6].

Tuple

A tuple is just like a list. It contains a group of elements that can be of different data types. The
elements in the tuple are separated by commas (,) and enclosed in parentheses (). The difference
between a list and a tuple is that list can be modified but tuples cannot be modified after it is
created. For example, (7, 9.5, 3), ('a',4,3).

BOOLEAN
Boolean is a data type with two built-in values: True or False. They are used in logical evaluation.
A True statement returns value 1 while a False statement returns value 0.

  FIND DATA TYPE
Python allows us to find out the type of data used in a program by using type() function.

Python 9

  ERRORS IN PYTHON PROGRAMS

Errors are faults in a program. Errors prevent a program from executing accurately. There can be
the following types of errors in a Python program:

SYNTAX ERRORS

A syntax error will occur when these rules and regulations are violated. For Example:

IDLE Shell 3.10.5

File Edit Format Run Options Window Help Invalid Syntax
Parentheses missing>>> print"Hello"

SyntaxError: Missing parentheses in call to 'print'. Did you mean >>> print("Hello")?

>>> print("Hello")

Hello

LOGICAL ERRORS

As the name suggests, these errors are related to the logic of the program. These errors are also
known as semantic errors. They cause the program to behave incorrectly. They are the most
difficult errors to fix but they do not usually crash the program. For example:

IDLE Shell 3.10.5

File Edit Format Run Options Window Help

>>> #Example of Logical Errors in a Program

>>> num1=float(input('Enter a number:'))

Enter a number:7

>>> num2=float(input('Enter another number:'))

Enter another number:8

>>> average=num1+num2/2

>>> print(average)

11.0

>>>

Invalid Logic
The average of 8 and 7 should be
7.5 Put num1 + num2 in braces as
(num1+num2) for correct result.

RUN-TIME ERRORS

Run-time errors in Python occur while the program is executing, causing it to crash or behave
unexpectedly. These errors arise due to issues such as invalid operations, unavailable resources,
or invalid inputs.

Bridge Course - Grade 810

For example:

IDLE Shell 3.10.5

File Edit Format Run Options Window Help

>>> a=10

>>> b=0

>>> c=a/b

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 c=a/b

 ZeroDivisionError: division by zero

Invalid Logic

  SOME MORE PROGRAMS
1.	 Write a program to take distance in Kilometres and convert it into Meters.

Program1.py

#Take distance in kilometer from the user

km=float(input("Enter distance in kilometres "))

m=km*1000

print("Distance in meters is ", m)

File Edit Format Run Options Window Help

Output

Enter distance in kilometres 10

Distance in meters is 10000.0

2.	� Write a program to take the length and width of a rectangle as input and calculate its area.

Program1.py

#Program to calculate the area

l=int(input("Enter the Length "))

w=int(input("Enter the Width "))

area= l * w

print("Area of the Rectangle is : ", area)

File Edit Format Run Options Window Help

Python 11

Output

Enter the Length 10

Enter the Width 4

Area of the Rectangle is : 40

