
PYTH N
with

12

Updated Copy coming soon

*

*
Beta

Computer Science with PYTHON

=

.Answer Key

Class

XII

IMPRINT 1

3Computer Science with PYTHON

	Local and Global Scope

Assessment

A.	 1.	 b	 2.	 a	 3.	 b	 4.	 b	 5.	 a
B.	 1.	 True	 2.	 False	 3.	 True	 4.	 True	 5.	 True
C.	 1.	 scope	 2.	 local	 3.	 global 	 4.	 error	 5.	 accessible
D.	 1.	 Part of the program where a named object is accessible is called its scope. The time period

during which a variable is active (during execution of the program) is known as its lifetime.
	 2.	 Local Variable is a variable that is defined inside a function and isaccessible only within the

body of a function (also called the scope of a function). Global variable is a variable defined
outside the functions and can be accessed inside as well as outside of functions. A global
variable can be modified inside any function by preceding it with the keyword global.

	 3.	 A global variable can be accessed and modified inside any function by using the keyword
global. Example:

		 a = 90

		 def func():

		 global a

		 a += 10

		 print('Locally in function func(), a =', a)

		 func()

		 print('In global frame, a =', a)

	 4.	 The scope of a named object (variable) refers to the part of a program in which it is accessible.
Local variable is accessible only within the body of a function while Global variables can be
accessed inside as well as outside of functions.

	 	 Example:
	 	 a = 10

2.
Unit I: Computational Thinking and Programming–2

Computer Science with PYTHON4

IMPRINT 1

		 def func():

		 b = 20

		 print('Locally in function func(), a =', a)

		 print('Locally in function func(), b =', b)

		 func()

		 print('In global frame, a =', a)

		 print('In global frame, b =', b)

		 # Above statement will yield an error as the variable b is not visible
outside

		 # func()

	 	 In the above example, variable a refers to a global variable, however, b is a variable local to
function func(), not visible outside the function.

	 5.	 An imported name can only be accessed within its scope. For example, let us examine the
following Program:

		 def areaCircle(radius):

		 """

		 Objective: To compute the area of the circle

		 Input Parameters:

		 radius- numeric value denoting radius of circle

		 Return value: area of circle

		 """

		 from math import pi

		 area = pi * radius ** 2

		 return area

		 radius = 5

		 print('radius of circle = ', radius, 'area of circle = ',
round(areaCircle(5),2))

		 print('value of pi = ', pi)

	 	 In the above program, as pi has been imported within the function areaCircle(), it is not
accessible in the global frame. Hence, we get an error when an attempt is made to print the
value of pi in the global frame.

	 6.	 local = 10	 	 #Global Variable

	 	 global_1 = 20	 #Global Variable

	 	 def myFunc(num):

IMPRINT 1

5Computer Science with PYTHON

	 	 local = 3	 #Local Variable

	 	 local = local * 5

	 	 global global_1		 #Global Variable

	 	 global_1 = global_1 + 100

	 	 print(local, global_1, sep='@@')

	 	 myFunc(local)

	 	 print(local, global_1, sep='@@')

		 Output:
		 15@@120
		 10@@120

	 7.	 count = 0
	 	 def countSpaces(str1):

	 	 global count # Statement added

	 	 for d in str1:

	 	 if d == ' ':

	 	 count += 1

	 	 return count

	 	 sentence1 = 'How are you?'

	 	 print('No of spaces in "' + sentence1 + '" =', countSpaces(sentence1))

	 	 sentence2 = ' I am good, Thank you'

	 	 print('No of spaces in "' + sentence1 + sentence2 + '" =',
countSpaces(sentence2))

		 Output after correcting program:
		 No of spaces in "How are you?" = 2
		 No of spaces in "How are you? I am good, Thank you" = 7
	 8.	 No of spaces in "How are you?" = 2
		 No of spaces in "How are you? I am good, Thank you" = 7

	 9.	 [3, 9, -2, 0, 8, 6]
		 [9, -2, 0, 8, 6, 3]
		 [0, 8, 6, 3, 9, -2]

 Assertion and Reasoning Based Questions
	 1.	 d	 2.	 b

Computer Science with PYTHON6

IMPRINT 1

 Case-based Questions
	 1.	 maxMarks = 100
		 def grade(name, marks):

		 '''

		 Objective: To print a student's grade, based on his/her marks

		 Input: name:string

		 marks: marks obtained by the student

		 Return Value: None

		 '''

		

		 global maxMarks

		 print('Name:', name)

		 print('Marks:', marks)

		 percentage = (marks/maxMarks) * 100

		 if percentage >= 90:

		 print('Grade: A')

		 elif percentage >= 60 and percentage <90:

		 print('Grade: B')

		 elif percentage >= 40 and percentage < 60:

		 print('Grade: C')

		 else :

		 print('Grade: C')

		

		 name = input("Enter student's name: ")

		 marks = int(input("Enter student's marks: "))

		 grade(name, marks)

	 2.	 discount = 10
		 def discountedPrice(category, price):

		 '''

		 Objective: To return discounted price

		 Input: category

		 price

IMPRINT 1

7Computer Science with PYTHON

		 Return Value: None

		 '''

		 global discount

		 if category == 'apparels':

		 return 12,(price - 0.12*price)

		 elif category == 'stationery':

		 return 5,(price - 0.05*price)

		 else:

		 return discount,(price- (discount/100)*price)

		

		 name = input("Enter item name: ")

		 category = input("Enter category of item: ")

		 price = int(input("Enter price of item: "))

		 print('Item Name:', name)

		 print('Category:', category)

		 print('Sale Price:', price)

		 discount, updatedPrice = discountedPrice(category, price)

		 print('Discount', str(discount)+'%')

		 print('Discounted Sale Price', updatedPrice)

	Handling Files in Python

Assessment
A.	 1.	 c	 2.	 c	 3.	 b	 4.	 c	 5.	 d
	 6.	 b	 7.	 a	 8.	 a	 9.	 b	 10.	 b
	 11.	 b	 12.	 a	 13.	 d	 14.	 a	 15.	 c
	 16.	 b	 17.	 c
B.	 1.	 True	 2.	 False	 3.	 False	 4.	 True	 5.	 False
C.	 1.	 text	 2.	 binary	 3.	 a (append mode)		 4.	 r (read mode)
	 5.	 text	 6.	 text, csv	 7.	 csv	 8.	 close()	 9.	 newline or \n
	 10.	 csv, commas

3.

Computer Science with PYTHON8

IMPRINT 1

D.	 1.	 •	� Function readline() is used to read line by line from a file whereas function readlines()
returns the entire content of the file from the current position in the form of a list of lines

	 	 •	� Function write() is used to write the data to the file. The function returns the number
of bytes written to the file. However, the function writelines() allows us to write a
sequence of lines to a file in one go.

	 	 •	� Write mode (w) is used for writing to a file. If the file being opened already exists in the
folder, opening the file in write mode will destroy the existing data of the file. Append
mode (a) is used for writing the new data at the end of an already existing file. If the
named file does not exist in the folder, a new file is created.

	 	 •	� The methods load() and dump() of the pickle module are used for reading and writing
the objects from and to the binary files respectively. Syntax for using the load() and
dump() methods of the pickle module are mentioned as follows:

	 		 pickle.dump(sourceObject, fileObject)

			 pickle.load(fileObject)

	 	 •	� The try-except blocks are used to handle the exceptions. A try block contains statements
that may lead to an exception, the except block specifies what action should be performed
if an exception is raised.

	 	 •	� To facilitate writing the data to CSV files, Python module csv provides the writer class
that takes the file object as an input argument and returns the writer object csv.
writer that is used for writing to a CSV file. Python module csv provides the reader
class that takes file object as an input argument and returns a reader object (csv.
reader) that is used for reading data from the CSV file.

	 	 •	� Pickling is the process of transforming a Python object into a byte stream for writing the
object to a file. While reading a binary file, reverse process of unpickling is applied to
obtain the data back in the object form.

	 	 •	� Function seek() is used to point the file handler to a particular position in the file while
the function tell() returns the current position of the file handler .

	 2.	 0
		 2
	 3.	 (i)	 Traceback (most recent call last):

			 �File "C:/Users/SheetalRajpal/AppData/Local/Programs/Python/
Python312/prog1.py", line 1, in <module>

			 stud = open('student.txt', 'r')

			� FileNotFoundError: [Errno 2] No such file or directory: 'student.
txt'

	 	 (ii)	� Meditation is the food to the soul!It takes care of the health of
mind.

	 	 (iii)	 Meditation is the food to the soul!It takes care of the heal

IMPRINT 1

9Computer Science with PYTHON

	 	 (iv)	� Meditation is the food to the soul!It takes care of the health of
mind.

			 Meditation has been practiced for thousands of years to help

	 4.	 empDetails = [['E01', 'Aasmeen', 'Khan', '01-10-1989', 1000000,
'Admin'],

		 ['E02', 'Pooja', 'Gupta', '13-02-1985', 2000000, 'Research'],

		 ['E03', 'Rachit', 'Mittal', '01-01-1990', 900000, 'Admin'],

		 ['E04', 'Ayushi', 'Sinha', '23-05-1985', 2500000, 'Research'],

		 ['E05', 'Sumit', 'Talwar', '29-03-1988', 1400000, 'Admin'],

		 ['E06', 'Rahul', 'Roy', '22-05-1986', 1200000, 'Admin'],

		 ['E07', 'Diksha', 'Dewan', '12-12-1979', 3200000, 'Research']]

		 employee = open('employees.csv', 'w', newline='')

		 writeEmployee = csv.writer(employee)

		 writeEmployee.writerows(empDetails) #Use writerows to write multiple
rows

	 5.	 EmpID	
		 **

		 FName	

		 **

		 LName	

		 **

		 DateOfBirth	

		 **

		 Salary	

		 **

		 Department	

		 **

		 D	 e	 t
	 6.	 The new content of the file will be the following:
		 Welcome to the class.

	 7.	 def copy(file1, file2):
		 '''

		 �Objective: To copy contents from file1 to file2 with a newline at
the end of each line

Computer Science with PYTHON10

IMPRINT 1

		 �Input Parameters: file1, file2 - string values representing file
names

		 Return Value: None

		 '''

		 f1 = open(file1, 'r')

		 f2 = open(file2, 'w')

		 for line in f1:

		 f2.write(line.rstrip() + '\n')

		 f1.close()

		 f2.close()

	 8.	 def capitalizeInput():
		 '''

		 �Objective: To take user input line by line, capitalize it, and
write to a file named data.txt

		 Input Parameters: None

		 Return Value: None

		 '''

		 file = open('data.txt', 'w')

		 while True:

		 line = input("Enter a line (or press Enter to finish): ")

		 if line == "":

		 break

		 file.write(line.upper() + '\n')

	 9.	 def copyOddLines(file1, file2):
		 '''

		 Objective: To copy alternate odd-numbered lines from file1 to file2

		 �Input Parameters: file1, file2 - string values representing file
names

		 Return Value: None

		 '''

		 f1 = open(file1, 'r')

		 f2 = open(file2, 'w')

		

		 lineNumber = 1

IMPRINT 1

11Computer Science with PYTHON

		 while True:

		 line = f1.readline()

		 if line == '':

		 break

		 if lineNumber % 2 != 0:

		 f2.write(line)

		 lineNumber += 1

		

		 f1.close()

		 f2.close()

	 10.	 def countWords():
		 '''

		 �Objective: To count the occurrences of "my" and "rainbow" in Poem.
txt

		 Input Parameters: None

		 Return Value: None

		 '''

		 file = open('Poem.txt', 'r')

		

		 myCount = 0

		 rainbowCount = 0

		

		 while True:

		 line = file.readline()

		 if line == '':

		 break

		 words = line.split()

		 for word in words:

		 if word.lower() == 'my':

		 myCount += 1

		 elif word.lower() == 'rainbow':

		 rainbowCount += 1

		

		 file.close()

Computer Science with PYTHON12

IMPRINT 1

	 11.	 def wordFrequency():
		 '''

		 �Objective: To list the frequency count of every word and find the
most frequently occurring word in swap

		 Input Parameters: None

		 Return Value: None

		 '''

		 file = open('swap', 'r')

		 wordCounts = {}

		 while True:

		 line = file.readline()

		 if line == '':

		 break

		 words = line.split()

		 for word in words:

		 word = word.lower()

		 if word in wordCounts:

		 wordCounts[word] += 1

		 else:

		 wordCounts[word] = 1

		 file.close()

		 mostCommonWord = None

		 mostCommonCount = 0

		

		 for word, count in wordCounts.items():

		 if count > mostCommonCount:

		 mostCommonWord = word

		 mostCommonCount = count

		

		 �print("The most frequently occurring word is", mostCommonWord,
"which occurs", mostCommonCount, "times")

	 12.	 def inputStory():
		 '''

IMPRINT 1

13Computer Science with PYTHON

		 �Objective: To take the contents of file Story.txt as input from
the user

		 Input Parameters: None

		 Return Value: None

		 '''

		 file = open('Story.txt', 'w')

		

		 while True:

		 line = input("Enter a line (or press Enter to finish): ")

		 if line == "":

		 break

		 file.write(line + '\n')

		 file.close()

		

		 def displayLinesStartingWithA():

		 '''

		 �Objective: To read contents from Story.txt and display lines starting
with the article 'A'

		 Input Parameters: None

		 Return Value: None

		 '''

		 file = open('Story.txt', 'r')

		

		 while True:

		 line = file.readline()

		 if line == '':

		 break

		 if line.startswith('A'):

		 print(line, end='')

		 file.close()

	 13.	 def saveText():
		 '''

		 �Objective: To take text as input from the user and store it in
Story.txt

Computer Science with PYTHON14

IMPRINT 1

		 Input Parameters: None

		 Return Value: None

		 '''

		 file = open('Story.txt', 'w')

		

		 while True:

		 line = input("Enter a line (or press Enter to finish): ")

		 if line == "":

		 break

		 file.write(line + '\n')

		 file.close()

		 def descFile(filename):

		 '''

		 �Objective: To read contents from a file and compute descriptive
statistics

		 �Input Parameters: filename - string value representing the file
name

		 Return Value: A tuple containing the number of characters, words,
and sentences

		 '''

		 file = open(filename, 'r')

		 text = file.read()

		 file.close()

		 numChars = len(text)

		 numWords = len(text.split())

		 numSentences = text.count('.') + text.count('!') + text.count('?')

		 return numChars, numWords, numSentences

	 14.	 def analyzeText(filename):
		 '''

		 �Objective: To compute the number of uppercase and lowercase
characters, and words starting with a vowel

		 �Input Parameters: filename - string value representing the file
name

		 �Return Value: A list containing the number of uppercase characters,
lowercase characters, and words starting with a vowel

IMPRINT 1

15Computer Science with PYTHON

		 '''

		 file = open(filename, 'r')

		 text = file.read()

		 file.close()

		

		 numUppercase = 0

		 numLowercase = 0

		 numVowelWords = 0

		

		 for char in text:

		 if char.isupper():

		 numUppercase += 1

		 elif char.islower():

		 numLowercase += 1

		

		 words = text.split()

		 for word in words:

		 if word[0].lower() in 'aeiou':

		 numVowelWords += 1

		

		 return [numUppercase, numLowercase, numVowelWords]

	 15.	 import csv
		 def calculateTotalPrice(file1, file2, outputFile):

		 '''

		 �Objective: To compute total price for each item and write it to a
third CSV file

		 �Input Parameters: file1, file2 - string values representing the
file names

		 �outputFile - string value representing the name
of the output file

		 Return Value: None

		 '''

		 f1 = open(file1, 'r')

		 f2 = open(file2, 'r')

Computer Science with PYTHON16

IMPRINT 1

		 f3 = open(outputFile, 'w', newline='')

		

		 file1Reader = csv.reader(f1)

		 file2Reader = csv.reader(f2)

		 outputWriter = csv.writer(f3)

		

		 while True:

		 itemRow = next(file1Reader)

		 quantityRow = next(file2Reader)

		 if itemRow and quantityRow:

		 itemNumber = itemRow[0]

		 pricePerUnit = float(itemRow[1])

		 quantityPurchased = int(quantityRow[1])

		

		 totalPrice = pricePerUnit * quantityPurchased

		 outputWriter.writerow([itemNumber, totalPrice])

		 else:

		 break

		

		 f1.close()

		 f2.close()

		 f3.close()

	 16.	 import csv
		 def calculateTotalPriceWithWeight(file1, file2, outputFile):

		 '''

		 �Objective: To compute total price for each item and price per unit
weight, then write it to a third CSV file

		 �Input Parameters: file1, file2 - string values representing the
file names

		 �outputFile - string value representing the name
of the output file

		 Return Value: None

		 '''

		 f1 = open(file1, 'r')

IMPRINT 1

17Computer Science with PYTHON

		 f2 = open(file2, 'r')

		 f3 = open(outputFile, 'w', newline='')

		

		 file1Reader = csv.reader(f1)

		 file2Reader = csv.reader(f2)

		 outputWriter = csv.writer(f3)

		

		 while True:

		 itemRow = next(file1Reader)

		 quantityRow = next(file2Reader)

		 if itemRow and quantityRow:

		 itemNumber = itemRow[0]

		 pricePerUnit = float(itemRow[1])

		 weight = float(itemRow[2])

		 quantityPurchased = int(quantityRow[1])

	

		 totalPrice = pricePerUnit * quantityPurchased

		 pricePerUnitWeight = pricePerUnit / weight

	

		 �outputWriter.writerow([itemNumber, totalPrice,
pricePerUnitWeight])

		 else:

		 break

	

		 f1.close()

		 f2.close()

		 f3.close()

	 17.	 import pickle
		 def writeStudentDictionaries(dictA, dictB):

		 '''

		 �Objective: To write two student dictionaries to a file
'classXIIstudents.dat'

		 �Input Parameters: dictA, dictB - dictionaries containing student
details

Computer Science with PYTHON18

IMPRINT 1

		 Return Value: None

		 '''

		 f = open('classXIIstudents.dat', 'wb')

		

		 data = {

		 "Class XII A": dictA,

		 "Class XII B": dictB

		 }

		

		 pickle.dump(data, f)

		 f.close()

		

		 def readStudentDictionaries():

		 '''

		 �Objective: To read student dictionaries from the file 'classXIIstudents.
dat' and display student details

		 Input Parameters: None

		 Return Value: None

		 '''

		 f = open('classXIIstudents.dat', 'rb')

		 data = pickle.load(f)

		 f.close()

			 for classKey in data:

		 print(classKey)

		 for rollNumber in data[classKey]:

		 name = data[classKey][rollNumber]

		 print("Roll Number:", rollNumber, "Name:", name)

	 18.	 import pickle
		 def updateMarks(fileName, n):

		 '''

		 �Objective: To update marks in dictionaries and save them to
'classXIIstudents.dat'

		 �Input Parameters: fileName - string value representing the file
name

IMPRINT 1

19Computer Science with PYTHON

		 n - number of dictionaries

		 Return Value: None

		 '''

		 dictionaries = []

		 for _ in range(n):

		 dictionary = {}

		 rollNum = int(input("Enter Roll Number: "))

		 name = input("Enter Name: ")

		 section = input("Enter Section: ")

		 marks = int(input("Enter Marks: "))

		 dictionary['RollNum'] = rollNum

		 dictionary['Name'] = name

		 dictionary['Section'] = section

		 dictionary['Marks'] = min(marks + 5, 100)

		 dictionaries.append(dictionary)

		

		 f = open(fileName, 'wb')

		 pickle.dump(dictionaries, f)

		 f.close()

		

		 def readAndUpdateMarks(fileName):

		 '''

		 �Objective: To read dictionaries from a file, update the marks, and
save them

		 �Input Parameters: fileName - string value representing the file
name

		 Return Value: None

		 '''

		 f = open(fileName, 'rb')

		 dictionaries = pickle.load(f)

		 f.close()

		

		 for dictionary in dictionaries:

Computer Science with PYTHON20

IMPRINT 1

		 dictionary['Marks'] = min(dictionary['Marks'] + 5, 100)

		

		 f = open(fileName, 'wb')

		 pickle.dump(dictionaries, f)

		 f.close()

	 19.	 import csv
		 def splitEmailIds(inputFile, outputFile):

		 '''

		 �Objective: To split email ids into username and domain_name and
write to a new CSV file with headers

		 �Input Parameters: inputFile - string value representing the input
file name

		 �outputFile - string value representing the output
file name

		 Return Value: None

		 '''

		 f1 = open(inputFile, 'r')

		 f2 = open(outputFile, 'w', newline='')

		

		 writer = csv.writer(f2)

		 writer.writerow(['username', 'domainname']) # Write the header

		

		 line = f1.readline()

		 while line:

		 email = line.strip()

		 username, domainName = email.split('@')

		 writer.writerow([username, domainName])

		 line = f1.readline()

		

		 f1.close()

		 f2.close()

	 20.	 import pickle
		 def updateRecord(fileName):

IMPRINT 1

21Computer Science with PYTHON

		 '''

		 �Objective: To moderate student marks based on specific criteria
and save the results

		 �Input Parameters: fileName - string value representing the file
name

		 Return Value: None

		 '''

		 studFile = open(fileName, 'rb')

		 students = pickle.load(studFile)

		 f.close()

		

		 for student in students:

		 marks = student['Marks']

		 if marks <= 27:

		 moderation = 7

		 elif marks <= 40:

		 moderation = 6

		 elif marks <= 50:

		 moderation = 5

		 elif marks <= 60:

		 moderation = 4

		 elif marks <= 70:

		 moderation = 3

		 elif marks <= 80:

		 moderation = 2

		 elif marks <= 90:

		 moderation = 1

		 else:

		 moderation = 0

		

		 student['Marks'] = min(marks + moderation, 100)

		

		 f = open(fileName, 'wb')

Computer Science with PYTHON22

IMPRINT 1

		 pickle.dump(students, f)

		 f.close()

 Assertion and Reasoning Based Questions
	 1.	 b	 2.	 b	 3.	 c	 4.	 b

 Case-based Questions
	 1.	 (i)	 c.	 csv
	 	 (ii)	 b.	 "Student.csv","w"
	 	 (iii)	 c.	 writer(fh)
	 	 (iv)	 d.	 roll_no, name, Class, section
	 	 (v)	 c.	 writerows()
	 2.	 (i)	 a.	 F= open("STUDENT.DAT",'wb')
	 	 (ii)	 c.	 pickle.dump(L,F)
	 	 (iii)	 a.	 R = pickle.load(F)
	 	 (iv)	 a.	 'r+' opens a file for both reading and writing. File object points to its beginning.
	 	 (v)	 d.	 moves the current file position to a given specified position

 Exception Handling

Assessment

A.	 1.	 c	 2.	 c	 3.	 b	 4.	 c	 5.	 b	 6.	 b
	 7.	 b	 8.	 c	 9.	 c	 10.	 c
B.	 1.	 True	 2.	 False	 3.	 True	 4.	 True	 5.	 True	 6.	 True
	 7.	 False	 8.	 True	 9.	 True	 10.	 True
C.	 1.	 incorrect indentation 	 2.	 TypeError	 3.	 ZeroDivisionError
	 4.	 IndexError	 5.	 EOFError	 6.	 else	 7.	 finally
D.	 1.	 Exceptions are errors or exceptional conditions that occur during the execution of a Python

program, disrupting the normal flow of code. Exception handling is a feature of Python that
allows developers to manage and respond to errors or exceptional situations gracefully.

	 2.	 Exception handling is a feature of Python that allows developers to manage and respond
to errors or exceptional situations gracefully. Exception handling in Python is done using

4.

IMPRINT 1

23Computer Science with PYTHON

the try...except block. The try block contains the code that may raise an exception, and the
except block specifies how to handle specific exception types.

	 3.	 Built-in exceptions are commonly encountered exceptions that are pre-defined by the
compiler or interpreter. Examples of built-in exceptions include NameError, TypeError,
ValueError, ZeroDivisionError, IndexError, EOFError, FileNotFoundError, and PermissionError.
To avoid the sudden termination of a program when an exception is raised, it is necessary
to handle the exception by catching it and implementing the appropriate actions using the
try...except clause.

	 4.	 NameError: This exception occurs whenever a name that appears in a statement is not
found globally.

	 	 TypeError: This exception occurs when an operation or function is applied to an object
of inappropriate type.

	 	 ValueError: This exception occurs whenever an inappropriate argument value, even
though of the correct type, is used in a function call.

	 	 ZeroDivisionError: This exception occurswhen we try to perform a numeric division in
whichthe denominator happens to be zero.

	 	 IndexError: This exception occurs whenever we try to access an index that is out of a
valid range.

	 5.	 The try block consists of statements that can potentially raise an exception. These statements
are enclosed within the try block because they are likely to raise an exception during
execution. The except block defines the actions to be performed when an exception is raised
within the try block.

		 For example,
		 try:

		 file = open("example.txt", "r")

		 # Perform operations on the file

		 file.close()

		 except FileNotFoundError:

		 	 print("File missing in working directory")

		 In the above code, when we try to open a file named example.txt in read mode, and the file
doesn't exist in the working directory, a FileNotFoundError is still raised, but it would
be managed smoothly. If the exception occurs, the program jumps to the except block that
contains the handling mechanism for the exception FileNotFoundError. The user now
gets a suitable message.

	 6.	 Clause finally is used to define a block of code that will always be executed, regardless
of whether an exception occurred or not. The finally block is placed after all the except
blocks (if any) and is optional.

Computer Science with PYTHON24

IMPRINT 1

	 7.	 try:
		 length = LEN('Enter your marks')

		 except NameError as e:

		 print('Undefined Name:', e)

	 8.	 try:
		 marks = 99

		 message = 'Marks Scored:' + marks

		 except TypeError as e:

	 	 print('TypeError: ', e)

	 9.	 try:
		 num1 = int(input ("Enter the first number"))

		 num2 = int(input("Enter the second number"))

		 quotient = (num1 / num2)

		 print ("Both the numbers entered were correct")

		 except ValueError: # to enter only integers

		 print (" Please enter only numbers")

		 except ZeroDivisionError: # Denominator should not be zero

		 print(" Number 2 should not be zero")

		 else:

		 print(" Great")

	 10.	 try:
		 num1 = int(input ("Enter the first number"))

		 num2 = int(input("Enter the second number"))

		 quotient = (num1 / num2)

		 print ("Both the numbers entered were correct")

		 except ValueError: # to enter only integers

		 print (" Please enter only numbers")

		 except ZeroDivisionError: # Denominator should not be zero

		 print(" Number 2 should not be zero")

		 else:

		 print(" Great")

IMPRINT 1

25Computer Science with PYTHON

	 11.	 import sys
		 try:
		 # Open the source file in read mode
		 source_file = open('source.txt', 'r')
		 # Read the contents of the source file
		 content = source_file.read()
		 # Close the source file
		 source_file.close()
		 try:
		 # Open the destination file in write mode
		 destination_file = open('destination.txt', 'w')
		 # Write the contents to the destination file
		 destination_file.write(content)
		 # Close the destination file
		 destination_file.close()
		 print('File copied successfully.')
		 except PermissionError:
		 print('Permission denied to write to the destination file.')
		 except Exception as e:
		 print('An error occurred while copying the file:', str(e))
		 except FileNotFoundError:
		 print('Source file not found.')
		 except Exception as e:
		 print('An error occurred while accessing the source file:', str(e))

	 12.	 try:
		 num1 = int(input ("Enter the first number"))

		 num2 = int(input("Enter the second number"))

		 quotient = (num1 / num2)

		 print ("Both the numbers entered were correct")

		 except ValueError: # to enter only integers

		 print (" Please enter only numbers")

		 except ZeroDivisionError: # Denominator should not be zero

		 print(" Number 2 should not be zero")

		 else:

		 print(" Great")

 Assertion and Reasoning Based Questions
	 1.	 a	 2.	 b 	 3.	 a

Computer Science with PYTHON26

IMPRINT 1

 Data Structures: Stacks

Assessment

A.	 1.	 b	 2.	 a	 3.	 c	 4.	 c	 5.	 b
B.	 1.	 False	 2.	 False	 3.	 False	 4.	 True	 5.	 True
C.	 1.	 data structure	 		 2.	 push	 3.	 pop	 4.	 underflow
D.	 1.	 The phrase data structures comprises two words, data and structures. The term data refers to

facts and statistics relating to something of interest. Similarly, the word structure refers to a
formation, an organisation, an arrangement, a collection, an entity, etc. Different organisations
of data enable different operations on it. Thus, a data structure is an arrangement of data
along with the associated operations.

	 2.	 Stack is a Last In First Out (LIFO) arrangement. Push operation inserts an element on the
top of the stack. Pop operation removes the top element from the stack.

	 3.	 An attempt to pop an element from the empty stack results in a stack underflow condition.
	 4.	 Given a stack, we may perform the following operations:
		 • � Push: Push operation places an element on the top of the stack. Sometimes, push operation

is also called the insertion of an element on top of a stack.
		 •  �Pop: Pop operation removes the top element from the stack. Pop operation is also called

the deletion of the top element of the stack.
	 5.	 (i)	 (a b c d + * *)
		 | Step | Operation | Stack

|
		 |---------------------------------|------------|-------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Push d | | [12, 6, 3, 2] |
		 | Perform (d + c) | (2 + 3) | [12, 6, 5] |
		 | Perform (b * 5) | (6 * 5) | [12, 30] |
		 | Perform (a * 30) | (12 * 30) | [360] |

		 Result: 360

		 (ii)	 (a b c d * + *)
		 | Step | Operation | Stack |
		 |---------------------------------|------------|-------------------|
		 | Initial | | |

5.

IMPRINT 1

27Computer Science with PYTHON

		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Push d | | [12, 6, 3, 2] |
		 | Perform (d * c) | (2 * 3) | [12, 6, 6] |
		 | Perform (b + 6) | (6 + 6) | [12, 12] |
		 | Perform (a * 12) | (12 * 12) | [144] |

		 Result: 144

		 (iii) (a b c d * * +)

		 | Step | Operation | Stack |
		 |---------------------------------|------------|-------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Push d | | [12, 6, 3, 2] |
		 | Perform (d * c) | (2 * 3) | [12, 6, 6] |
		 | Perform (b * 6) | (6 * 6) | [12, 36] |
		 | Perform (a + 36) | (12 + 36) | [48] |

			 Result: 48

		 (iv) (a b c d + + *)

		 | Step | Operation | Stack |
		 |---------------------------------|------------|-------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Push d | | [12, 6, 3, 2] |
		 | Perform (d + c) | (2 + 3) | [12, 6, 5] |
		 | Perform (b + 5) | (6 + 5) | [12, 11] |
		 | Perform (a * 11) | (12 * 11) | [132] |

		 Result: 132

		 (v) (a b c d + * +)

		 | Step | Operation | Stack |
		 |---------------------------------|------------|-------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Push d | | [12, 6, 3, 2] |

Computer Science with PYTHON28

IMPRINT 1

		 | Perform (d + c) | (2 + 3) | [12, 6, 5] |
		 | Perform (b * 5) | (6 * 5) | [12, 30] |
		 | Perform (a + 30) | (12 + 30) | [42] |

		 Result: 42

		 (vi) (a b c d * + +)

		 | Step | Operation | Stack |
		 |-----------------------------------|------------|-------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Push d | | [12, 6, 3, 2] |
		 | Perform (d * c) | (2 * 3) | [12, 6, 6] |
		 | Perform (b + 6) | (6 + 6) | [12, 12] |
		 | Perform (a + 12) | (12 + 12) | [24] |

		 Result: 24

		 (vii) (a b + c * d *)

		 | Step | Operation | Stack |
		 |-----------------------------------|------------|-------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Perform (a + b) | (12 + 6) | [18] |
		 | Push c | | [18, 3] |
		 | Perform (18 * c) | (18 * 3) | [54] |
		 | Push d | | [54, 2] |
		 | Perform (54 * d) | (54 * 2) | [108] |

		 Result: 108

		 (viii) (a b c + * d *)

		 | Step | Operation | Stack |
		 |-----------------------------------|------------|-------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Perform (b + c) | (6 + 3) | [12, 9] |
		 | Perform (a * 9) | (12 * 9) | [108] |
		 | Push d | | [108, 2] |
		 | Perform (108 * d) | (108 * 2) | [216] |

		 Result: 216

IMPRINT 1

29Computer Science with PYTHON

		 (ix) (a b - c * d *)

		 | Step | Operation | Stack |
		 |-----------------------------------|------------|-------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Perform (a - b) | (12 - 6) | [6] |
		 | Push c | | [6, 3] |
		 | Perform (6 * c) | (6 * 3) | [18] |
		 | Push d | | [18, 2] |
		 | Perform (18 * d) | (18 * 2) | [36] |

		 Result: 36

		 (x) (a b c - * d *)

		 | Step | Operation | Stack |
		 |-----------------------------------|------------|-------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Perform (b - c) | (6 - 3) | [12, 3] |
		 | Perform (a * 3) | (12 * 3) | [36] |
		 | Push d | | [36, 2] |
		 | Perform (36 * d) | (36 * 2) | [72] |

		 Result: 72

		 (xi) (a b - c d * /)

	 	 | Step | Operation | Stack |
		 |------------------------------|---------------|-------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Perform (a - b) | (12 - 6) | [6] |
		 | Push c | | [6, 3] |
		 | Push d | | [6, 3, 2] |
		 | Perform (c * d) | (3 * 2) | [6, 6] |
		 | Perform (6 / 6) | (6 / 6) | [1] |

		 Result: 1

Computer Science with PYTHON30

IMPRINT 1

		 (xii) (a b c d / + +)

		 | Step | Operation | Stack |
		 |------------------------------|---------------|--------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Push d | | [12, 6, 3, 2]|
		 | Perform (c / d) | (3 / 2) | [12, 6, 1] |
		 | Perform (b + 1) | (6 + 1) | [12, 7] |
		 | Perform (a + 7) | (12 + 7) | [19] |

		 Result: 19

		 (xiii) (a b + c * d /)

		 | Step | Operation | Stack |
		 |------------------------------|---------------|-------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Perform (a + b) | (12 + 6) | [18] |
		 | Push c | | [18, 3] |
		 | Perform (18 * c) | (18 * 3) | [54] |
		 | Push d | | [54, 2] |
		 | Perform (54 / d) | (54 / 2) | [27] |

		 Result: 27

		 (xiv) (a b + c / d *)

		 | Step | Operation | Stack |
		 |------------------------------|---------------|-------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Perform (a + b) | (12 + 6) | [18] |
		 | Push c | | [18, 3] |
		 | Perform (18 / c) | (18 / 3) | [6] |
		 | Push d | | [6, 2] |
		 | Perform (6 * d) | (6 * 2) | [12] |

		 Result: 12

IMPRINT 1

31Computer Science with PYTHON

		 (xv) (a b c / * d *)

		 | Step | Operation | Stack |
		 |------------------------------|---------------|-------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Perform (b / c) | (6 / 3) | [12, 2] |
		 | Perform (a * 2) | (12 * 2) | [24] |
		 | Push d | | [24, 2] |
		 | Perform (24 * d) | (24 * 2) | [48] |

		 Result: 48

		 (xvi) (a b + c d / *)

		 | Step | Operation | Stack |
		 |------------------------------|---------------|-------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Perform (a + b) | (12 + 6) | [18] |
		 | Push c | | [18, 3] |
		 | Push d | | [18, 3, 2] |
		 | Perform (c / d) | (3 / 2) | [18, 1] |
		 | Perform (18 * 1) | (18 * 1) | [18] |

		 Result: 18

		 (xvii) (a b - c / d *)

		 | Step | Operation | Stack |
		 |------------------------------|---------------|-------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Perform (a - b) | (12 - 6) | [6] |
		 | Push c | | [6, 3] |
		 | Perform (6 / c) | (6 / 3) | [2] |
		 | Push d | | [2, 2] |
		 | Perform (2 * d) | (2 * 2) | [4] |

		 Result: 4

Computer Science with PYTHON32

IMPRINT 1

		 (xviii) (a b - c * d /)

		 | Step | Operation | Stack |
		 |------------------------------|---------------|-------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Perform (a - b) | (12 - 6) | [6] |
		 | Push c | | [6, 3] |
		 | Perform (6 * c) | (6 * 3) | [18] |
		 | Push d | | [18, 2] |
		 | Perform (18 / d) | (18 / 2) | [9] |

		 Result: 9

		 (xix) (a b c - / d *)

		 | Step | Operation | Stack |
		 |------------------------------|---------------|-------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Perform (b - c) | (6 - 3) | [12, 3] |
		 | Perform (a / 3) | (12 / 3) | [4] |
		 | Push d | | [4, 2] |
		 | Perform (4 * d) | (4 * 2) | [8] |

		 Result: 8

		 (xx) (a b - c d / *)

		 | Step | Operation | Stack |
		 |------------------------------|---------------|-------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Perform (a - b) | (12 - 6) | [6] |
		 | Push c | | [6, 3] |
		 | Push d | | [6, 3, 2] |
		 | Perform (c / d) | (3 / 2) | [6, 1] |
		 | Perform (6 * 1) | (6 * 1) | [6] |

		 Result: 6

IMPRINT 1

33Computer Science with PYTHON

		 (xxi) (a b c d e f + * + + +)

		 | Step | Operation | Stack |
		 |------------------------|--------------|----------------------|
		 | Initial | | |
		 | Push a | | [12] |
		 | Push b | | [12, 6] |
		 | Push c | | [12, 6, 3] |
		 | Push d | | [12, 6, 3, 2] |
		 | Push e | | [12, 6, 3, 2, 6] |
		 | Push f | | [12, 6, 3, 2, 6, 9] |
		 | Perform (f + e) | (9 + 6) | [12, 6, 3, 2, 15] |
		 | Perform (d * 15) | (2 * 15) | [12, 6, 3, 30] |
		 | Perform (c + 30) | (3 + 30) | [12, 6, 33] |
		 | Perform (b + 33) | (6 + 33) | [12, 39] |
		 | Perform (a + 39) | (12 + 39) | [51] |

		 Result: 51

	 6.	 (i) (a - b - c - d)

		 | Step | Operation | Stack | Output |
		 |------|-----------|------------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read - | [-] | a |
		 | 3 | Read b | [-] | a b |
		 | 4 | Read - | [-, -] | a b - |
		 | 5 | Read c | [-] | a b - c |
		 | 6 | Read - | [-, -] | a b - c- |
		 | 7 | Read d | [-] | a b - c - d |
		 | 8 | End | | a b - c - d -|

		 Postfix: a b - c - d -

		 (ii) ((a - b) - (c - d))

		 | Step | Operation | Stack | Output |
		 |------|-----------|---------------|--------------|
		 | 1 | Read (| [(] | |
		 | 2 | Read a | [(] | a |
		 | 3 | Read - | [(, -] | a |
		 | 4 | Read b | [(, -] | a b |
		 | 5 | Read) | | a b - |
		 | 6 | Read - | [-] | a b - |
		 | 7 | Read (| [-, (] | a b - |
		 | 8 | Read c | [-, (] | a b - c |
		 | 9 | Read - | [-, (, -] | a b - c |
		 | 10 | Read d | [-, (, -] | a b - c d |
		 | 11 | Read) | [-] | a b - c d - |
		 | 12 | End | | a b - c d - -|

		 Postfix: a b - c d - -

Computer Science with PYTHON34

IMPRINT 1

		 (iii) ((a - b) - c - d)

	 	 | Step | Operation | Stack | Output |
		 |------|-----------|--------------|--------------|
		 | 1 | Read (| [(] | |
		 | 2 | Read a | [(] | a |
		 | 3 | Read - | [(, -] | a |
		 | 4 | Read b | [(, -] | a b |
		 | 5 | Read) | | a b - |
		 | 6 | Read - | [-] | a b - |
		 | 7 | Read c | [-] | a b - c |
		 | 8 | Read - | [-, -] | a b - c - |
		 | 9 | Read d | [-] | a b - c - d |
		 | 10 | End | | a b - c - d -|

		 Postfix: a b - c - d -

		 (iv) (a / b + c - d)

		 | Step | Operation | Stack | Output |
		 |------|-----------|--------------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read / | [/] | a |
		 | 3 | Read b | [/] | a b |
		 | 4 | Read + | [+] | a b / |
		 | 5 | Read c | [+] | a b / c |
		 | 6 | Read - | [-] | a b / c + |
		 | 7 | Read d | [-] | a b / c + d |
		 | 8 | End | | a b / c + d -|

		 Postfix: a b / c + d -**

		 (v) (a / b / c / d)

	 	 | Step | Operation | Stack | Output |
		 |------|-----------|-------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read / | [/] | a |
		 | 3 | Read b | [/] | a b |
		 | 4 | Read / | [/] | a b / |
		 | 5 | Read c | [/] | a b / c |
		 | 6 | Read / | [/] | a b / c / |
		 | 7 | Read d | [/] | a b / c / d |
		 | 8 | End | | a b / c / d /|

		 Postfix: a b / c / d /

		 (vi) ((a / b) / (c / d))

		 | Step | Operation | Stack | Output |
		 |------|-----------|--------------|--------------|
		 | 1 | Read (| [(] | |
		 | 2 | Read a | [(] | a |

IMPRINT 1

35Computer Science with PYTHON

		 | 3 | Read / | [(, /] | a |
		 | 4 | Read b | [(, /] | a b |
		 | 5 | Read) | | a b / |
		 | 6 | Read / | [/] | a b / |
		 | 7 | Read (| [/, (] | a b / |
		 | 8 | Read c | [/, (] | a b / c |
		 | 9 | Read / | [/, (, /] | a b / c |
		 | 10 | Read d | [/, (, /] | a b / c d |
		 | 11 | Read) | [/] | a b / c d / |
		 | 12 | End | | a b / c d / /|

		 Postfix: a b / c d / /

		 (vii) ((a / b) / c / d)

		 | Step | Operation | Stack | Output |
		 |------|-----------|-------------|--------------|
		 | 1 | Read (| [(] | |
		 | 2 | Read a | [(] | a |
		 | 3 | Read / | [(, /] | a |
		 | 4 | Read b | [(, /] | a b |
		 | 5 | Read) | | a b / |
		 | 6 | Read / | [/] | a b / |
		 | 7 | Read c | [/] | a b / c |
		 | 8 | Read / | [/] | a b / c / |
		 | 9 | Read d | [/] | a b / c / d |
		 | 10 | End | | a b / c / d /|

		 Postfix: a b / c / d /

		 (viii) (a / (b / c) / d)

	 	 | Step | Operation | Stack | Output |
		 |------|-----------|-------------|------------|
		 | 1 | Read a | | a |
		 | 2 | Read / | [/] | a |
		 | 3 | Read (| [/, (] | a |
		 | 4 | Read b | [/, (] | a b |
		 | 5 | Read / | [/, (, /] | a b |
		 | 6 | Read c | [/, (, /] | a b c |
		 | 7 | Read) | [/] | a b c / |
		 | 8 | Read / | [/] | a b c / |
		 | 9 | Read d | [/] | a b c / d |
		 | 10 | End | | a b c / d /|

		 Postfix: a b c / d /

		 (ix) (a / ((b / c) / d))

		 | Step | Operation | Stack | Output |
		 |------|-----------|--------------|---------------|
		 | 1 | Read a | | a |

Computer Science with PYTHON36

IMPRINT 1

		 | 2 | Read / | [/] | a |
		 | 3 | Read (| [/, (] | a |
		 | 4 | Read (| [/, (, (] | a |
		 | 5 | Read b | [/, (, (] | a b |
		 | 6 | Read / | [/, (, (, /] | a b |
		 | 7 | Read c | [/, (, (, /] | a b c |
		 | 8 | Read) | [/, (, /] | a b c / |
		 | 9 | Read / | [/, (, /] | a b c / |
		 | 10 | Read d | [/, (, /] | a b c / d |
		 | 11 | Read) | [/] | a b c / d / |
		 | 12 | Read) | [/] | a b c / d / |
		 | 13 | End | | a b c / d / / |

		 Postfix: a b c / d / /

		 (x) (a / b / (c / d))

		 | Step | Operation | Stack | Output |
		 |------|-----------|--------------|---------------|
		 | 1 | Read a | | a |
		 | 2 | Read / | [/] | a |
		 | 3 | Read b | [/] | a b |
		 | 4 | Read / | [/] | a b / |
		 | 5 | Read (| [/, (] | a b / |
		 | 6 | Read c | [/, (] | a b / c |
		 | 7 | Read / | [/, (, /] | a b / c |
		 | 8 | Read d | [/, (, /] | a b / c d |
		 | 9 | Read) | [/] | a b / c d / |
		 | 10 | Read / | [/] | a b / c d / |
		 | 11 | End | | a b / c d / / |

		 Postfix: a b / c d / /

		 (xi) (a - b * c / d)

		 | Step | Operation | Stack | Output |
		 |------|-----------|------------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read - | [-] | a |
		 | 3 | Read b | [-] | a b |
		 | 4 | Read * | [-, *] | a b |
		 | 5 | Read c | [-, *] | a b c |
		 | 6 | Read / | [-, /] | a b c * |
		 | 7 | Read d | [-, /] | a b c * d |
		 | 8 | End | | a b c * d / -|

		 Postfix: a b c * d / -

IMPRINT 1

37Computer Science with PYTHON

		 (xii) (a / b - c / d)

	 	 | Step | Operation | Stack | Output |
		 |------|-----------|------------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read / | [/] | a |
		 | 3 | Read b | [/] | a b |
		 | 4 | Read - | [-] | a b / |
		 | 5 | Read c | [-] | a b / c |
		 | 6 | Read / | [-, /] | a b / c |
		 | 7 | Read d | [-, /] | a b / c d |
		 | 8 | End | | a b / c d / -|

		 Postfix: a b / c d / -

		 (xiii) (a / b - (c / d))

		 | Step | Operation | Stack | Output |
		 |------|-----------|---------------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read / | [/] | a |
		 | 3 | Read b | [/] | a b |
		 | 4 | Read - | [-] | a b / |
		 | 5 | Read (| [-, (] | a b / |
		 | 6 | Read c | [-, (] | a b / c |
		 | 7 | Read / | [-, (, /] | a b / c |
		 | 8 | Read d | [-, (, /] | a b / c d |
		 | 9 | Read) | [-] | a b / c d / |
		 | 10 | End | | a b / c d / -|

		 Postfix: a b / c d / -

		 (xiv) ((a - b) / (c / d))

		 | Step | Operation | Stack | Output |
		 |------|-----------|--------------|--------------|
		 | 1 | Read (| [(] | |
		 | 2 | Read a | [(] | a |
		 | 3 | Read - | [(, -] | a |
		 | 4 | Read b | [(, -] | a b |
		 | 5 | Read) | | a b - |
		 | 6 | Read / | [/] | a b - |
		 | 7 | Read (| [/, (] | a b - |
		 | 8 | Read c | [/, (] | a b - c |
		 | 9 | Read / | [/, (, /] | a b - c |
		 | 10 | Read d | [/, (, /] | a b - c d |
		 | 11 | Read) | [/] | a b - c d / |
		 | 12 | End | | a b - c d / /|

		 Postfix: a b - c d / /

Computer Science with PYTHON38

IMPRINT 1

		 (xv) ((a - b) * c / d)

		 | Step | Operation | Stack | Output |
		 |------|-----------|---------------|--------------|
		 | 1 | Read (| [(] | |
		 | 2 | Read a | [(] | a |
		 | 3 | Read - | [(, -] | a |
		 | 4 | Read b | [(, -] | a b |
		 | 5 | Read) | | a b - |
		 | 6 | Read * | [*] | a b - |
		 | 7 | Read c | [*] | a b - c |
		 | 8 | Read / | [/] | a b - c * |
		 | 9 | Read d | [/] | a b - c * d |
		 | 10 | End | | a b - c * d /|

		 Postfix: a b - c * d /

		 (xvi) (a / (b - c) / d)

		 | Step | Operation | Stack | Output |
		 |------|-----------|--------------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read / | [/] | a |
		 | 3 | Read (| [/, (] | a |
		 | 4 | Read b | [/, (] | a b |
		 | 5 | Read - | [/, (, -] | a b |
		 | 6 | Read c | [/, (, -] | a b c |
		 | 7 | Read) | [/] | a b c - |
		 | 8 | Read / | [/] | a b c - / |
		 | 9 | Read d | [/] | a b c - / d |
		 | 10 | End | | a b c - / d /|

		 Postfix: a b c - / d /

		 (xvii) (a / (b + c / d))

	 	 | Step | Operation | Stack | Output |
		 |------|-----------|-------------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read / | [/] | a |
		 | 3 | Read (| [/, (] | a |
		 | 4 | Read b | [/, (] | a b |
		 | 5 | Read + | [/, (, +] | a b |
		 | 6 | Read c | [/, (, +] | a b c |
		 | 7 | Read / | [/, (, +, /]| a b c |
		 | 8 | Read d | [/, (, +, /]| a b c d |
		 | 9 | Read) | [/] | a b c d / + |
		 | 10 | End | | a b c d / + /|

		 Postfix: a b c d / + /

IMPRINT 1

39Computer Science with PYTHON

		 (xviii) (a / b / (c - d))

		 | Step | Operation | Stack | Output |
		 |------|-----------|--------------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read / | [/] | a |
		 | 3 | Read b | [/] | a b |
		 | 4 | Read / | [/] | a b / |
		 | 5 | Read (| [/, (] | a b / |
		 | 6 | Read c | [/, (] | a b / c |
		 | 7 | Read - | [/, (, -] | a b / c |
		 | 8 | Read d | [/, (, -] | a b / c d |
		 | 9 | Read) | [/] | a b / c d - |
		 | 10 | End | | a b / c d - /|

		 Postfix: a b / c d - /

		 (xix) (a + b / (c - d))

		 | Step | Operation | Stack | Output |
		 |------|-----------|--------------|--------------|
		 | 1 | Read a | | a |
		 | 2 | Read + | [+] | a |
		 | 3 | Read b | [+] | a b |
		 | 4 | Read / | [+, /] | a b |
		 | 5 | Read (| [+, /, (] | a b |
		 | 6 | Read c | [+, /, (] | a b c |
		 | 7 | Read - | [+, /, (, -] | a b c |
		 | 8 | Read d | [+, /, (, -] | a b c d |
		 | 9 | Read) | [+, /] | a b c d - |
		 | 10 | End | | a b c d - / +|

		 Postfix: a b c d - / +

		 (xx) ((a - b) * (c - d) * e)

		 | Step | Operation | Stack | Output |
		 |------|-----------|-------------|------------------|
		 | 1 | Read (| [(] | |
		 | 2 | Read a | [(] | a |
		 | 3 | Read - | [(, -] | a |
		 | 4 | Read b | [(, -] | a b |
		 | 5 | Read) | [*] | a b - |
		 | 6 | Read * | [*] | a b - |
		 | 7 | Read (| [*, (] | a b - |
		 | 8 | Read c | [*, (] | a b - c |
		 | 9 | Read - | [*, (, -] | a b - c |
		 | 10 | Read d | [*, (, -] | a b - c d |
		 | 11 | Read) | [*] | a b - c d - |
		 | 12 | Read * | [*] | a b - c d - * |

Computer Science with PYTHON40

IMPRINT 1

		 | 13 | Read e | [*] | a b - c d - * e |
		 | 14 | End | | a b - c d - * e *|

		 Postfix: a b - c d - * e *

		 (xxi) ((a - b) * c + (d + e) * f)

		 | Step | Operation | Stack | Output |
		 |------|-----------|----------------|----------------------|
		 | 1 | Read (| [(] | |
		 | 2 | Read a | [(] | a |
		 | 3 | Read - | [(, -] | a |
		 | 4 | Read b | [(, -] | a b |
		 | 5 | Read) | [*] | a b - |
		 | 6 | Read * | [*] | a b - |
		 | 7 | Read c | [*] | a b - c |
		 | 8 | Read + | [+] | a b - c * |
		 | 9 | Read (| [+, (] | a b - c * |
		 | 10 | Read d | [+, (] | a b - c * d |
		 | 11 | Read + | [+, (, +] | a b - c * d |
		 | 12 | Read e | [+, (, +] | a b - c * d e |
		 | 13 | Read) | [+] | a b - c * d e + |
		 | 14 | Read * | [+, *] | a b - c * d e + |
		 | 15 | Read f | [+, *] | a b - c * d e + f |
		 | 16 | End | | a b - c * d e + f * +|

		 Postfix: a b - c * d e + f * +

		 (xxii) ((a - b) * c * d + e)

		 | Step | Operation | Stack | Output |
		 |------|-----------|---------------|------------------|
		 | 1 | Read (| [(] | |
		 | 2 | Read a | [(] | a |
		 | 3 | Read - | [(, -] | a |
		 | 4 | Read b | [(, -] | a b |
		 | 5 | Read) | [*] | a b - |
		 | 6 | Read * | [*] | a b - |
		 | 7 | Read c | [*] | a b - c |
		 | 8 | Read * | [*] | a b - c * |
		 | 9 | Read d | [*] | a b - c * d |
		 | 10 | Read + | [+] | a b - c * d * |
		 | 11 | Read e | [+] | a b - c * d * e |
		 | 12 | End | | a b - c * d * e +|

		 Postfix: a b - c * d * e +

		 (xxiii) (a * (b + (c + d) * e))

		 | Step | Operation | Stack | Output |
		 |------|-----------|-----------------|-------------------|
		 | 1 | Read a | | a |

IMPRINT 1

41Computer Science with PYTHON

		 | 2 | Read * | [*] | a |
		 | 3 | Read (| [*, (] | a |
		 | 4 | Read b | [*, (] | a b |
		 | 5 | Read + | [*, (, +] | a b |
		 | 6 | Read (| [*, (, +, (] | a b |
		 | 7 | Read c | [*, (, +, (] | a b c |
		 | 8 | Read + | [*, (, +, (, +] | a b c |
		 | 9 | Read d | [*, (, +, (, +] | a b c d |
		 | 10 | Read) | [*, (, +] | a b c d + |
		 | 11 | Read * | [*, (, +, *] | a b c d + |
		 | 12 | Read e | [*, (, +, *] | a b c d + e |
		 | 13 | Read) | [*, (] | a b c d + e * |
		 | 14 | Read) | [*] | a b c d + e * + |
		 | 15 | End | | a b c d + e * + * |

		 Postfix: a b c d + e * + *

	 7.	 Sequence (i): 1 2 3

	 	 | Step | Action | Stack | Output |
		 |------|--------------------|--------|--------|
		 | 1 | Train 1 arrives | [1] | |
		 | 2 | Train 1 exits | [] | 1 |
		 | 3 | Train 2 arrives | [2] | 1 |
		 | 4 | Train 2 exits | [] | 1 2 |
		 | 5 | Train 3 arrives | [3] | 1 2 |
		 | 6 | Train 3 exits | [] | 1 2 3 |

		 Sequence (i) is possible.

	 	 Sequence (ii): 1 3 2

	 	 | Step | Action | Stack | Output |
		 |------|------------------|---------|--------|
		 | 1 | Train 1 arrives | [1] | |
		 | 2 | Train 1 exits | [] | 1 |
		 | 3 | Train 2 arrives | [2] | 1 |
		 | 4 | Train 3 arrives | [2, 3] | 1 |
		 | 5 | Train 3 exits | [2] | 1 3 |
		 | 6 | Train 2 exits | [] | 1 3 2 |

		 Sequence (ii) is possible.

	 	 Sequence (iii): 2 1 3

	 	 | Step | Action | Stack | Output |
		 |------|-----------------|---------|--------|
		 | 1 | Train 1 arrives | [1] | |
		 | 2 | Train 2 arrives | [1, 2] | |
		 | 3 | Train 2 exits | [1] | 2 |

Computer Science with PYTHON42

IMPRINT 1

		 | 4 | Train 1 exits | [] | 2 1 |
		 | 5 | Train 3 arrives | [3] | 2 1 |
		 | 6 | Train 3 exits | [] | 2 1 3 |

		 Sequence (iii) is not possible. (Train 2 cannot exit before Train 1
without additional tracks)

	 	 Sequence (iv): 2 3 1

	 	 | Step | Action | Stack | Output |
		 |------|-----------------|-----------|--------|
		 | 1 | Train 1 arrives | [1] | |
		 | 2 | Train 2 arrives | [1, 2] | |
		 | 3 | Train 3 arrives | [1, 2, 3] | |
		 | 4 | Train 3 exits | [1, 2] | 3 |
		 | 5 | Train 2 exits | [1] | 3 2 |
		 | 6 | Train 1 exits | [] | 3 2 1 |

		 Sequence (iv) is not possible. (Train 2 cannot exit before Train 1
without additional tracks)

	 	 Sequence (v): 3 1 2

	 	 | Step | Action | Stack | Output |
		 |------|-----------------|-----------|--------|
		 | 1 | Train 1 arrives | [1] | |
		 | 2 | Train 2 arrives | [1, 2] | |
		 | 3 | Train 3 arrives | [1, 2, 3] | |
		 | 4 | Train 3 exits | [1, 2] | 3 |
		 | 5 | Train 1 exits | [2] | 3 1 |
		 | 6 | Train 2 exits | [] | 3 1 2 |

	 	 Sequence (v) is not possible. (Train 3 cannot exit before Train 1 and
Train 2 without additional tracks)

	 	 Sequence (vi): 3 2 1

	 	 | Step | Action | Stack | Output |
		 |------|-----------------|-----------|--------|
		 | 1 | Train 1 arrives | [1] | |
		 | 2 | Train 2 arrives | [1, 2] | |
		 | 3 | Train 3 arrives | [1, 2, 3] | |
		 | 4 | Train 3 exits | [1, 2] | 3 |
		 | 5 | Train 2 exits | [1] | 3 2 |
		 | 6 | Train 1 exits | [] | 3 2 1 |

		 Sequence (vi) is possible.

	 8.	 A similar approach as used in previous question can be used to attempt this question.

IMPRINT 1

43Computer Science with PYTHON

	 9.	 def PUSH(stack, stackEvens):
		 '''

		 Objective: To push the even number at the top of the stack,

		 Input Parameter:

		 stack - list of even multiples of 5

		 stackEvens - list

		 Return Value: None

		 '''

		 for number in N:

		 if number%5==0 and number%2==0:

		 stack.append(num)

		 print(stackEvens)

		 print(len(stackEvens))

	 10.	 def pushToStack(charStack, character):
		 '''

		 Objective: To push a character onto the stack.

		 Input Parameter:

		 charStack - list acting as the stack

		 character - character to push onto the stack

		 Return Value: None

		 '''

		 charStack.append(character)

		 def printReversedStack(charStack):

		 '''

		 �Objective: To print characters from the stack in reverse order,
each character printed twice.

		 Input Parameter:

		 charStack - list acting as the stack

		 Return Value: None

		 '''

		 while charStack:

		 character = charStack.pop()

Computer Science with PYTHON44

IMPRINT 1

		 print(character * 2, end='')

		

		 def main():

		 '''

		 �Objective: To accept characters from the user and print them in
reverse order with each character printed twice.

		 Input Parameter: None

		 Return Value: None

		 '''

		 charStack = []

		 userInput = input("Enter up to 30 characters: ")

		

		 for char in userInput[:30]:

		 pushToStack(charStack, char)

		

		 printReversedStack(charStack)

		 print() # For a new line after the output

		

		 # Run the main function

		 main()

	 11.	 def pushToStack(stack, number):
		 '''

		 Objective: To push a number onto the stack.

		 Input Parameter:

		 stack - list acting as the stack

		 number - number to push onto the stack

		 Return Value: None

		 '''

		 stack.append(number)

		

		 def findMaxInStack(stack):

		 '''

		 Objective: To find the maximum number in the stack.

IMPRINT 1

45Computer Science with PYTHON

		 Input Parameter:

		 stack - list acting as the stack

		 Return Value:

		 maxValue - maximum value in the stack

		 '''

		 maxValue = None

		 if stack:

		 maxValue = stack[0]

		 for number in stack:

		 if number > maxValue:

		 maxValue = number

		 return maxValue

		

		 def main():

		 '''

		 �Objective: To accept 10 numbers from the user, store even numbers
in a stack, and display the largest element from the stack.

		 Input Parameter: None

		 Return Value: None

		 '''

		 numList = []

		 stack = []

		

		 print("Enter 10 numbers:")

		 for _ in range(10):

		 num = int(input())

		 numList.append(num)

		

		 for num in numList:

		 if num % 2 == 0:

		 pushToStack(stack, num)

		

		 if stack:

Computer Science with PYTHON46

IMPRINT 1

		 maxValue = findMaxInStack(stack)

		 print("The maximum value of stack is", maxValue)

		 else:

		 print("The stack is empty, no even numbers were entered.")

		

		 # Run the main function

		 main()

	 12.	 def push(stack, travelId, travelDate, destination):
		 '''

		 Objective: To push a travel detail onto the stack.

		 Input Parameters:

		 stack - list acting as the stack

		 travelId - integer representing the travel ID

		 travelDate - string representing the travel date

		 destination - string representing the travel destination

		 Return Value: None

		 '''

		 travelDetails = [travelId, travelDate, destination]

		 stack.append(travelDetails)

		 print("Travel details pushed to stack.")

		

		 def pop(stack):

		 '''

		 Objective: To pop the top travel detail from the stack.

		 Input Parameters:

		 stack - list acting as the stack

		 Return Value:

		 �travelDetails - list containing travel details popped from the
stack

		 '''

		 if not stack:

		 print("Stack is empty. Cannot pop.")

		 return None

IMPRINT 1

47Computer Science with PYTHON

		 travelDetails = stack.pop()

		 print("Travel details popped from stack.")

		 return travelDetails

		

		 def display(stack):

		 '''

		 Objective: To display all travel details in the stack.

		 Input Parameters:

		 stack - list acting as the stack

		 Return Value: None

		 '''

		 if not stack:

		 print("Stack is empty.")

		 return

		 print("Travel details in stack:")

		 for details in reversed(stack):

		 �print("Travel ID:", details[0], "Travel Date:", details[1],
"Destination:", details[2])

		

		 def main():

		 '''

		 Objective: To provide a menu-driven interface for stack operations.

		 Input Parameters: None

		 Return Value: None

		 '''

		 stack = []

		

		 while True:

		 print("\nMenu:")

		 print("1. PUSH")

		 print("2. POP")

		 print("3. DISPLAY")

		 print("4. EXIT")

Computer Science with PYTHON48

IMPRINT 1

		 choice = int(input("Enter your choice (1-4): "))

			

		 if choice == 1:

		 travelId = int(input("Enter Travel ID: "))

		 travelDate = input("Enter Travel Date (YYYY-MM-DD): ")

		 destination = input("Enter Destination: ")

		 push(stack, travelId, travelDate, destination)

		 elif choice == 2:

		 poppedDetails = pop(stack)

		 if poppedDetails:

		 �print("Popped Details - Travel ID:", poppedDetails[0],
"Travel Date:", poppedDetails[1], "Destination:",
poppedDetails[2])

		 elif choice == 3:

		 display(stack)

		 elif choice == 4:

		 print("Exiting the program.")

		 break

		 else:

		 �print("Invalid choice. Please enter a number between 1 and
4.")

		

		 # Run the main function

		 if __name__ == "__main__":

		 main()

	 13.	 def push(stack, num):
		 '''

		 Objective: To push the prime number at the top of the stack

		 Input Parameter:

		 stack - list of prime numbers

		 num - number to be pushed

		 Return Value: None

		 '''

IMPRINT 1

49Computer Science with PYTHON

		 stack.append(num)

		

		 def pop(stack):

		 '''

		 Objective: To pop an element from the stack

		 Input Parameter:

		 stack - list of prime numbers

		 Return Value: Top element of the stack

		 '''

		 if stack != []:

		 return stack.pop()

		 else:

		 return None

	

		 def isPrime(num):

		 '''

		 Objective: To check if a number is prime

		 Input Parameter:

		 num - number to be checked

		 Return Value: True if num is prime, else False

		 '''

		 if num <= 1:

		 return False

		 for i in range(2, int(num**0.5) + 1):

		 if num % i == 0:

		 return False

		 return True

		

		 # Main program

		 stackPrimes = []

		 numList = [] # List to store the 10 numbers

		

Computer Science with PYTHON50

IMPRINT 1

		 # Accept 10 numbers from the user

		 for i in range(10):

		 num = int(input("Enter number: "))

		 numList.append(num)

		

		 # Push only prime numbers onto the stack

		 for number in numList:

		 if isPrime(number):

		 push(stackPrimes, number)

		

		 print("Stack with prime numbers:", stackPrimes)

	 14.	 def push(stack, char):
		 '''

		 Objective: To push a character onto the stack

		 Input Parameter:

		 stack - list of characters

		 char - character to be pushed

		 Return Value: None

		 '''

		 stack.append(char)

		

		 def pop(stack):

		 '''

		 Objective: To pop a character from the stack

		 Input Parameter:

		 stack - list of characters

		 Return Value: Top character of the stack

		 '''

		 if stack != []:

		 return stack.pop()

		 else:

		 return None

		

IMPRINT 1

51Computer Science with PYTHON

		 def isPalindrome(str1):

		 '''

		 Objective: To check if the given string is a palindrome using a
stack

		 Input Parameter:

		 str1 - string to be checked

		 Return Value: True if str1 is a palindrome, else False

		 '''

		 stack = []

		 length = len(str1)

		

		 # The middle character should be 'b'

		 if str1[length // 2] != 'b':

		 return False

	

		 # Push first half of the string onto the stack

		 for i in range(length // 2):

		 push(stack, str1[i])

		

		 # Compare second half of the string with the stack

		 for i in range(length // 2 + 1, length):

		 if str1[i] != pop(stack):

		 return False

		

		 return True

		

		 # Main program

		 str1 = input("Enter the string: ")

	

		 if isPalindrome(str1):

		 print("The string is a palindrome.")

		 else:

		 print("The string is not a palindrome.")

Computer Science with PYTHON52

IMPRINT 1

	 15.	 def push(stack, char):
		 '''

		 Objective: To push a character onto the stack

		 Input Parameter:

		 stack - list of characters

		 char - character to be pushed

		 Return Value: None

		 '''

		 stack.append(char)

		

		 def pop(stack):

		 '''

		 Objective: To pop a character from the stack

		 Input Parameter:

		 stack - list of characters

		 Return Value: Top character of the stack

			 '''

		 if stack:

		 return stack.pop()

		 else:

		 return None

		 def isBalanced(expression):

		 '''

		 Objective: To check if the given expression has balanced parentheses

		 Input Parameter:

		 expression - string containing the expression

		 Return Value: True if parentheses are balanced, else False

		 '''

		 stack = []

		 for char in expression:

		 if char in '([{':

		 push(stack, char)

IMPRINT 1

53Computer Science with PYTHON

		 elif char in ')]}':

		 if not stack:

		 return False

		 topChar = pop(stack)

		 if not matches(topChar, char):

		 return False

		 return not stack

		

		 def matches(opening, closing):

		 '''

		 Objective: To check if the opening and closing parentheses match

		 Input Parameter:

		 opening - opening parenthesis character

		 closing - closing parenthesis character

		 Return Value: True if they match, else False

		 '''

		 opens = '([{'

		 closes = ')]}'

		 return opens.index(opening) == closes.index(closing)

	

		 # Main program

		 expression = input("Enter the expression: ")

		 if isBalanced(expression):

		 print("The expression has balanced parentheses.")

		 else:

		 print("The expression does not have balanced parentheses.")

	 16.	 def push(stack, url):

		 '''

		 Objective: To push a URL onto the stack

		 Input Parameter:

		 stack - list of URLs

		 url - URL to be pushed

		 Return Value: None

Computer Science with PYTHON54

IMPRINT 1

		 '''

		 stack.append(url)

		

		 def pop(stack):

		 '''

		 Objective: To pop a URL from the stack

		 Input Parameter:

		 stack - list of URLs

		 Return Value: Top URL of the stack

		 '''

		 if stack:

		 return stack.pop()

		 else:

		 return None

		

		 def displayStack(stack):

		 '''

		 Objective: To display the URLs in the stack

		 Input Parameter:

		 stack - list of URLs

		 Return Value: None

		 '''

		 for url in reversed(stack):

		 print(url)

		

		 # Main program

		 backStack = []

		 forwardStack = []

	

		 while True:

		 print("\nMenu Options:")

		 print("1. BACK")

		 print("2. FORWARD")

IMPRINT 1

55Computer Science with PYTHON

		 print("3. DISPLAY BACK PAGES")

		 print("4. DISPLAY FORWARD PAGES")

		 print("5. EXIT")

		

		 choice = int(input("Enter your choice: "))

		

		 if choice == 1:

		 if backStack:

		 url = pop(backStack)

		 push(forwardStack, url)

		 print(f"Navigated back to: {url}")

		 else:

		 print("No pages in back stack.")

		

		 elif choice == 2:

		 if forwardStack:

		 url = pop(forwardStack)

		 push(backStack, url)

		 print(f"Navigated forward to: {url}")

		 else:

		 print("No pages in forward stack.")

		

		 elif choice == 3:

		 print("Back Pages:")

		 if backStack:

		 displayStack(backStack)

		 else:

		 print("No pages in back stack.")

		

		 elif choice == 4:

		 print("Forward Pages:")

		 if forwardStack:

		 displayStack(forwardStack)

Computer Science with PYTHON56

IMPRINT 1

		 else:

		 print("No pages in forward stack.")

		

		 elif choice == 5:

		 print("Exiting the program.")

		 break

		

		 else:

		 print("Invalid choice. Please try again.")

	 17.	 def precedence(op):
		 '''

		 Objective: To return the precedence of the given operator

		 Input Parameter:

		 op - operator character

		 Return Value:

		 precedence value as integer

		 '''

		 if op == '+' or op == '-':

		 return 1

		 if op == '*' or op == '/':

		 return 2

		 return 0

		

		 def applyOp(op, a, b):

		 '''

		 Objective: To apply the operator on two operands

		 Input Parameter:

		 op - operator character

		 a - first operand

		 b - second operand

		 Return Value:

		 result of the operation

		 '''

IMPRINT 1

57Computer Science with PYTHON

		 if op == '+':

		 return a + b

		 if op == '-':

		 return a - b

		 if op == '*':

		 return a * b

		 if op == '/':

		 return a / b

		

		 def evaluate(expression):

		 '''

		 Objective: To evaluate the infix expression using two stacks

		 Input Parameter:

		 expression - infix expression string

		 Return Value:

		 result of the expression

		 '''

		 operands = []

		 operators = []

		

		 i = 0

		 while i < len(expression):

		 if expression[i] == ' ':

		 i += 1

		 continue

		 elif expression[i] == '(':

		 operators.append(expression[i])

		 elif expression[i].isdigit():

		 val = 0

		 while (i < len(expression) and expression[i].isdigit()):

		 val = (val * 10) + int(expression[i])

		 i += 1

		 operands.append(val)

Computer Science with PYTHON58

IMPRINT 1

		 i -= 1

		 elif expression[i] == ')':

		 while len(operators) != 0 and operators[-1] != '(':

		 op = operators.pop()

		 val2 = operands.pop()

		 val1 = operands.pop()

		 operands.append(applyOp(op, val1, val2))

		 operators.pop()

		 else:

		 �while (len(operators) != 0 and precedence(operators[-1])
>= precedence(expression[i])):

		 op = operators.pop()

		 val2 = operands.pop()

		 val1 = operands.pop()

		 operands.append(applyOp(op, val1, val2))

		 operators.append(expression[i])

		 i += 1

		

		 while len(operators) != 0:

		 op = operators.pop()

		 val2 = operands.pop()

		 val1 = operands.pop()

		 operands.append(applyOp(op, val1, val2))

		 return operands[-1]

		

		 # Main program

		 expression = input("Enter an infix expression: ")

		 result = evaluate(expression)

		 print(f"The result of the expression is: {result}")

 Assertion and Reasoning Based Questions
	 1.	 c	 2.	 c

IMPRINT 1

59Computer Science with PYTHON

 Case-based Questions
	 1.	 def pushOn(bookStack, bookName):
		 '''

		 Objective: To push a book name onto the stack

		 Input Parameters:

		 bookStack - list of book names

		 bookName - name of the book to be added

		 Return Value: None

		 '''

		 bookStack.append(bookName)

		

		 def popFrom(bookStack):

		 '''

		 Objective: To pop a book name from the stack

		 Input Parameters:

		 bookStack - list of book names

		 Return Value:

		 name of the book that was removed or None if the stack is empty

		 '''

		 if len(bookStack) == 0:

		 print("The book stack is empty. Cannot pop.")

		 return None

		 else:

		 return bookStack.pop()

	 2.	 def push15(studentDict, ageStack):
		 '''

		 �Objective: To push names of students onto the stack whose age is
greater than 15

		 Input Parameters:

		 �studentDict - dictionary containing student names as keys and
their ages as values

Computer Science with PYTHON60

IMPRINT 1

		 �ageStack - list used as a stack to store names of students with
age greater than 15

		 Return Value: None

		 '''

		 for name, age in studentDict.items():

		 if age > 15:

		 ageStack.append(name)

		

		 def pop15(ageStack):

		 '''

		 �Objective: To display and delete the elements of the stack in LIFO
order

		 Input Parameters:

		 �ageStack - list used as a stack to store names of students with
age greater than 15

		 Return Value: None

		 '''

		 while ageStack:

		 print(ageStack.pop())

		

		 # Main program

		 D = {"SHANTI": 14, "Joe": 20, "Prabhjot": 12, "Tehzeeb": 16}

		 ageStack = []

		

		 # Push names of students whose age is greater than 15

		 push15(D, ageStack)

	

		 # Display and delete elements from the stack in LIFO order

		 pop15(ageStack)

IMPRINT 1

61Computer Science with PYTHON

Unit II: Computer Networks

	Computer Networks

Assessment

A.	 1.	 a	 2.	 c	 3.	 d	 4.	 b	 5.	 b	 6.	 c
	 7.	 b	 8.	 d	 9.	 b	 10.	 a	 11.	 b	 12.	 c
	 13.	 c	 14.	 b
B.	 1.	 False	 2.	 True	 3.	 True	 4.	 False	 5.	 True
	 6.	 True	 7.	 False	 8.	 True	 9.	 True
C.	 1.	 Wi-Fi	 2.	 packet	 3.	 data rate	 4.	 light	 5.	 circuit
	 6.	 star	 7.	 Bit rate	 8.	 Bandwidth
D.	 1.	 Give full form of the following:
		 MAC: Media Access Control

		 NIC: Network Interface Card

		 ARPANET: Advanced Research Projects Agency Network

		 LAN: Local Area Network

		 MAN: Metropolitan Area Network

		 WAN: Wide Area Network

	 2.	 Name four types of networks.
		 LAN (Local Area Network)

		 MAN (Metropolitan Area Network)

		 WAN (Wide Area Network)

		 PAN (Personal Area Network)

	 3.	 Give two examples of MAN.
		 City-wide Wi-Fi network

		 Cable TV network within a city

	 4.	 Define the following terms:
	 	 (i)	� Transmission medium: The physical path between the transmitter and

receiver in a communication system.

	 	 (ii)	� Topology: The arrangement of various elements (links, nodes, etc.)
of a computer network.

6.

Computer Science with PYTHON62

IMPRINT 1

	 	 (iii)	� Bandwidth: The maximum rate at which data can be transmitted over
a network or internet connection, typically measured in bits per
second (bps). It indicates the capacity of the connection.

	 	 (iv)	� Communication channel: A medium used to transport information from
a sender to a receiver.

	 5.	 Differentiate between the followings:
	 	 (i)	 Packet Switching and Circuit Switching

	 	 	 •	 �Packet Switching: Data is divided into packets, each taking an
independent path to the destination. Efficient for variable data
rates and robust against line failures.

	 	 	 •	 �Circuit Switching: A dedicated communication path is established
between the sender and receiver for the duration of the
transmission. Provides a constant connection with fixed bandwidth.

	 	 (ii)	 Star topology and Tree topology:

	 	 	 •	 Star Topology: All nodes are connected to a central hub.
	 	 	 •	 �Tree Topology: A hierarchy of nodes where each node is connected

to a parent node, forming a tree-like structure.

	 	 (iii)	 Bus topology and Ring topology:

	 	 	 •	 Bus Topology: All nodes share a common communication line (bus).
	 	 	 •	 �Ring Topology: Each node is connected to exactly two other nodes,

forming a ring.

	 	 (iv)	 LAN and PAN:

	 	 	 •	 �LAN: Network covering a small geographical area like a single
building.

	 	 	 •	 �PAN: Network covering a very small area, typically within a range
of a few meters (e.g., Bluetooth devices).

	 	 (v)	 MAN and WAN:

	 	 	 •	 MAN: Network covering a city.
	 	 	 •	 �WAN: Network covering a large geographical area, possibly

worldwide.

	 	 (vi)	 Hub and Switch:

	 	 	 •	 �Hub: A basic networking device that connects multiple devices in
a LAN.

	 	 	 •	 �Switch: A more advanced device that connects multiple devices
and can filter and forward data to the correct destination.

	 	 (vii)	 Modem and Router:

	 	 	 •	 �Modem: Device that modulates and demodulates signals for data
transmission.

IMPRINT 1

63Computer Science with PYTHON

	 	 	 •	 �Router: Device that forwards data packets between computer
networks.

	 	 (viii)	 Guided and unguided transmission media:
	 	 	 •	 �Guided: Uses physical wires or cables (e.g., twisted pair, coaxial

cable).

	 	 	 •	 Unguided: Uses wireless methods (e.g., radio waves, infrared).
	 6.	 Network used by Ramya:
		 PAN (Personal Area Network)

	 7.	 Data Transfer Rate: The speed at which data is transmitted from one
device to another, usually measured in bits per second (bps).

	 8.	 Bit Rate vs. Baud Rate:
	 	 •	 Bit Rate: The number of bits transmitted per second.
	 	 •	 �Baud Rate: The number of signal changes (symbols) transmitted per

second.

	 	 Example: If each symbol represents 2 bits, a baud rate of 1000 symbols
per second results in a bit rate of 2000 bits per second.

	 9.	 Minimum required data rate:
	 	 Calculation:
	 	 •	 1 page = 600 characters
	 	 •	 12 pages = 12 * 600 = 7200 characters
	 	 •	 7200 characters * 8 bits/character = 57600 bits
	 	 •	 Data rate = 57600 bits / 15 seconds = 3840 bits per second (bps)
	 10.	 Three Types of Cables in Computer Networks:
	 	 •	 Twisted Pair Cable
	 	 •	 Coaxial Cable
	 	 •	 Optical Fiber Cable
	 11.	 Different Ways Devices May Be Connected in a LAN:
	 	 •	 Star Topology
	 	 •	 Bus Topology
	 	 •	 Ring Topology
	 	 •	 Mesh Topology
	 	 •	 Tree Topology
	 12.	 Example of Wired PAN:
	 	 •	 �USB (Universal Serial Bus) connections between a computer and

peripherals like a printer or external hard drive.

Computer Science with PYTHON64

IMPRINT 1

	 13.	 Two Characteristics of a Hub:
	 	 •	 It broadcasts data to all devices in the network segment.
	 	 •	 Operates at the physical layer (Layer 1) of the OSI model.
	 14.	 Modem: A device that modulates and demodulates signals for data transmission over

telephone lines or cable.
	 	 Categorization: Internal modem (inside a computer) and external modem (connected

externally to a computer).
	 15.	 Short Note on Modems:
	 	 •	 �A modem (modulator-demodulator) converts digital data from a computer

into analog signals for transmission over telephone or cable lines and
vice versa. Modems enable internet access by connecting to ISPs and
are essential for dial-up and broadband connections. Types include
DSL, cable, and fiber modems, which differ based on the technology
and medium they use.

	 16.	 Device for Wireless Internet Access: A wireless router or Wi-Fi access
point.

	 17.	 Ascending Order of Frequencies:
	 	 •	 Radio Waves
	 	 •	 Infrared
	 	 •	 Microwaves
	 18.	 Best Transmission Media for Hilly Areas: Satellite communication, as

it provides wide coverage and is not impeded by physical terrain.

	 19.	 Differentiation between Sender and Receiver:
	 	 •	 Sender: The device or person that initiates and transmits data.
	 	 •	 �Receiver: The device or person that accepts and processes the received

data.

	 20.	 Use of MAC Address: Identifies devices on a local network and ensures
that data is delivered to the correct hardware.

	 21.	 Short Note on Microwaves:
	 •	 Microwaves are electromagnetic waves with frequencies ranging from 1

GHz to 300 GHz. They are used in communication systems like satellite
and mobile networks due to their ability to carry large amounts of data
over long distances. Microwaves require line-of-sight transmission and
are also used in radar and cooking appliances.

 Assertion and Reasoning Based Questions
	 1.	 a.	 Both A and R are true and R is the correct explanation of A

IMPRINT 1

65Computer Science with PYTHON

	 2.	 d.	 A is false but R is true
	 3.	 a.	 Both A and R are true and R is the correct explanation of A

 Case-based Questions
	 1.	 a.	 Mumbai HO — Gurugram Operational Centre — Kolkata Branch Office
			 | |
			 Madurai Branch Office Mumbai HO
	 	 b.	Gurugram Operational Centre
	 	 c.	 (A)
		 d.	 (A)
	 2.	 a.	 Administrative Unit
	 	 b.	� Administrative Unit - Oncology Unit - Nephrology Unit - Neurology Unit - Orthopaedic

Unit
	 	 c.	 Switch
	 	 d.	Topology: Star
		 	 Network cable: Ethernet cables

	�Computer Networks: Protocols, Technologies,
and Web Services

Assessment

A.	 1.	 b	 2.	 b	 3.	 a	 4.	 a	 5.	 a	 6.	 c
	 7.	 a.	 8.	 d	 9.	 a	 10.	 a	 11.	 b	 12.	 d
	 13.	 c	 14.	 a	 15.	 d
B.	 1.	 True	 2.	 False	 3.	 True	 4.	 True	 5.	 False
	 6.	 True	 7.	 True	 8.	 True	 9.	 False	 10.	 True
C.	 1.	 VoIP (Voice over Internet Protocol)	 2.	 TELNET	 3.	 3rd
	 4.	 World Wide Web Consortium (W3C)	 5.	 IP address	 6.	 static
	 7.	 script	 8.	 Wireless	 9.	 IP address	 10.	 communication protocols
D.	 1.	 •	 DNS: Domain Name System
	 	 •	 POP3: Post Office Protocol 3
	 	 •	 TELNET: Terminal Network

7.

Computer Science with PYTHON66

IMPRINT 1

	 	 •	 CDMA: Code Division Multiple Access
	 	 •	 MMS: Multimedia Messaging Service
	 2.	 TCP (Transmission Control Protocol) operates in the transport layer of the OSI model.

It provides reliable, ordered, and error-checked delivery of a stream of data between
applications. TCP segments the data from the application layer, attaches headers, and ensures
that data packets are delivered to the correct application on the receiving end, working
seamlessly with IP in the network layer.

	 3.	 The Transmission Control Protocol (TCP) ensures the reliable transmission of data across
a network. It establishes a connection between sender and receiver, manages data
segmentation, controls flow to prevent congestion, and handles error correction by
retransmitting lost packets.

	 4.	 An FTP (File Transfer Protocol) session involves two main components: the client and the
server. The client initiates a connection to the FTP server using the FTP protocol. Once
connected, the client can upload, download, and manage files on the server. The session
typically involves user authentication (username and password), navigating directories, and
performing file operations using commands like GET (download), PUT (upload), LIST (list
files), and DELETE (remove files). The communication can occur in active or passive modes,
depending on the way the data connection is established between the client and server.

	 5.	 The protocol used is PPP (Point-to-Point Protocol).
	 6.	 Do It Yourself
	 7.	 Do It Yourself
	 8.	 Do It Yourself
	 9.	 Examples include XMPP (Extensible Messaging and Presence Protocol) and IRC (Internet

Relay Chat).
	 10.	 VoIP (Voice over Internet Protocol) allows users to make voice calls using a broadband

Internet connection instead of a regular (or analog) phone line.
	 11.	 Radio waves are used to connect a device to the Internet via a WiFi hotspot.
	 12.	 WiFi: Typically covers a shorter range (up to 100 meters) and is used for local area networks

(LANs) such as in homes, cafes, and offices.
	 	 WiMax: Covers a much larger range (up to 50 kilometers) and is designed for metropolitan

area networks (MANs), providing broadband wireless access over a wider area.
	 13.	 Fifth Generation (5G) mobile technology has made businesses more efficient by giving

consumers faster access to information. Like 4G mobile technology, 5G technology is also
based on packet switching. 5G supports the data transfer speed of approximately 10 Gbps.
Thus, it enables low latency, i.e., significantly reduced data transfer time. As of now, 5G
Ultra-Wideband is available in several cities of India.

	 14.	 (i)	� Web Server: A web server is a software or hardware that serves web pages to users in
response to their requests, which are made via web browsers.

IMPRINT 1

67Computer Science with PYTHON

	 	 (ii)	� Web Browser: A web browser is a software application used to access information on
the World Wide Web.

	 	 (iii)	� URL (Uniform Resource Locator): A URL is the address used to access web pages and
resources on the Internet.

	 	 (iv)	� Web Hosting: Web hosting is a service that allows organizations and individuals to
post a website or web page onto the Internet.

	 	 (v)	� Web Scripting: The process of writing code to automate tasks and enhance interactivity
on web pages. This is usually done using languages like JavaScript, PHP, or Python,
allowing dynamic content generation, form validation, and user interaction.

	 15.	 The World Wide Web Consortium (W3C) is an international community that develops
open standards to ensure the long-term growth of the Web.

	 16.	 The Domain Name System (DNS) translates domain names into IP addresses, allowing
browsers to load Internet resources.

	 17.	 A web browser works by sending a request to a web server, receiving the HTML document
in response, and rendering it into a web page that users can interact with.

	 18.	 HTML (HyperText Markup Language):
	 	 •	 Purpose: Used to create and design the structure of web pages.
	 	 •	� Functionality: Defines the layout and appearance of web content, including text, images,

links, and other multimedia elements.
	 	 •	 Static: Primarily used for displaying static content.
	 	 •	 Predefined Tags: Uses predefined tags such as <html>, <body>, <div>, etc.
	 	 XML (eXtensible Markup Language):
	 	 •	 Purpose: Used to store and transport data.
	 	 •	 Functionality: Focuses on the data itself and its structure, not its presentation.
	 	 •	� Dynamic: Can be used to represent dynamic data that can be manipulated and transferred

across different systems.
	 	 •	 Custom Tags: Allows users to define their own tags to suit the data structure.
	 19.	 •	 Social Networking Sites (e.g., Facebook, Twitter)
	 	 •	 Content Sharing Platforms (e.g., YouTube, Flickr)
	 	 •	 Collaborative Tools (e.g., Google Docs, Wikipedia)
	 20.	 Client-Side Scripting:
	 	 •	 Execution: Runs on the user's browser.
	 	 •	� Purpose: Used to create interactive web pages that respond to user input without needing

to reload the page.
	 		 Examples: JavaScript, HTML, CSS.

Computer Science with PYTHON68

IMPRINT 1

	 	 •	� Interaction: Can manipulate the DOM (Document Object Model) and enhance user
experience through dynamic content updates.

	 	 Server-Side Scripting:
	 	 •	 Execution: Runs on the web server.
	 	 •	� Purpose: Used to generate dynamic content, manage databases, and handle server logic

before sending the page to the client.
	 		 Examples: PHP, ASP.NET, Python, Ruby.
	 	 •	� Interaction: Processes user input, interacts with databases, and generates HTML to be

sent to the client.

 Assertion and Reasoning Based Questions
	 1.	 b.	 Both A and R are true and R is not the correct explanation of A.
	 2.	 d.	 A is false but R is true.
	 3.	 a.	 Both A and R are true and R is the correct explanation of A.

 Case-based Questions
Protocol: https

Domain Name: www.incredibleindia.org

Path: /content/incredible-india-v2/en/experiences/

Name of the HTML Document: adventure.html

	Network Security

Assessment

A.	 1.	 d	 2.	 c	 3.	 d	 4.	 a	 5.	 b	 6.	 d
	 7.	 b	 8.	 a	 9.	 c	 10.	 a	 11.	 c	 12.	 d
B.	 1.	 True	 2.	 False	 3.	 True	 4.	 False	 5.	 False
	 6.	 True	 7.	 True	 8.	 False
C.	 1.	 risk	 2.	 macro	 3.	 attachment			 4.	 white hat hacker
	 5.	 firewall	 6.	 copyright
D.	 1.	 Confidentiality, integrity, availability, authentication, and non-repudiation.

8.

IMPRINT 1

69Computer Science with PYTHON

	 2.	 An attack is any attempt to destroy, expose, alter, disable, steal, or gain unauthorized access
to or make unauthorized use of an asset. Attack and vulnerability are related because an
attack exploits vulnerabilities.

	 3.	 •	 Attack: An intentional attempt to compromise system security.
		 •	� Vulnerability: A weakness in the system that can be exploited by an attacker. Example:

SQL injection (attack) exploiting a lack of input validation (vulnerability).
	 4.	 Both replicate and spread, infecting their hosts and causing harm.
	 5.	 A virus can corrupt or delete data, use up system resources, log keystrokes, and provide

unauthorized access to attackers.
	 6.	 (i)	� Virus and Worm: A virus needs a host file to spread, while a worm is self-replicating

and spreads without a host.
	 	 (ii)	� HTTP and HTTPS: HTTP is unsecured, while HTTPS uses SSL/TLS to secure data

transmission.
	 	 (iii)	� Trademark and Trade Secret: A trademark is a recognizable sign/design representing

a product or service, while a trade secret is confidential information providing a business
advantage.

	 	 (iv)	 �Hacker and Cracker: A hacker explores systems for educational purposes, while a
cracker breaks into systems with malicious intent.

	 7.	 (i)	 Virus: Code attaches to a target program and replicates.
		 (ii)	 Trojan Horse: "Happy New Year.exe" appears benign but performs a malicious action.
		 (iii)	 Spam: Unsolicited commercial emails.
		 (iv)	 Worm: Malicious code replicates through email and overwhelms networks.
	 8.	 (i)	 Section 66A: Penalty for sending offensive messages through communication service.
		 (ii)	 Section 66F: Cyber terrorism (includes inciting communal riots or disharmony).
	 9.	 The type of software attack is a Trojan Horse because:
		 •	� The user received an email attachment named "Happy2021" which seemed benign.
		 •	� Upon clicking the attachment, a video played, which is the expected behavior, masking

the malicious activity.
		 •	� While the video was playing, a malicious code was downloaded and attached itself to all

outgoing emails from the user's computer.
		 Trojan Horses are characterized by their ability to disguise themselves as legitimate software

or files while performing hidden malicious activities, such as downloading additional malware
or spreading itself through emails, as described in the scenario.

 Assertion and Reasoning Based Questions
	 1.	 c.	 A is true but R is false

Computer Science with PYTHON70

IMPRINT 1

	 2.	 a.	 Both A and R are true and R is the correct explanation of A
	 3.	 b.	 Both A and R are true and R is not the correct explanation of A

 Case-based Questions
	 1.	 Copyright infringement. Legal protection: Roy can seek legal action under copyright laws,

and the producer-director may be liable for damages and an injunction to stop the use of
the script.

	 2.	 Surabhi should file for a patent to legally protect her drug invention from being used or
sold by others without her permission.

Unit III: Database Management

	Database Management System

Assessment

A.	 1.	 c	 2.	 c	 3.	 b	 4.	 a	 5.	 d	 6.	 b
	 7.	 c	 8.	 a	 9.	 d	 10.	 b	 11.	 a	 12.	 c
	 13.	 d	 14.	 c	 15.	 b
B.	 1.	 True	 2.	 True	 3.	 False	 4.	 True	 5.	 True
	 6.	 True	 7.	 False
C.	 1.	 Attribute	 2.	 Schema	 3.	 Degree	 4.	 Relation	 5.	 Composite key
	 6.	 Domain
D.	 1.	 (i)	 True	 (ii)	 True	 (iii)	 True	 (iv)	 True	 (v)	 False
		 (vi)	 True	 (vii)	 True	 (viii)	 False	 (ix)	 False	 (x)	 True
	 	 (xi)	 True
	 2.	 ItemCode: INT
	 	 •	 This will store integer values.
		 ItemName: VARCHAR
	 	 •	� You can specify the maximum length for the item name. For example, if

the maximum length of the item name is expected to be 255 characters,
you can use VARCHAR(255).

		 Price: DECIMAL
	 	 •	� The DECIMAL type is used for storing precise numeric values, especially

when dealing with financial data. You can specify the precision and

9.

IMPRINT 1

71Computer Science with PYTHON

scale. For example, DECIMAL(10, 2) allows up to 10 digits in total,
with 2 digits after the decimal point.

	 3.	 No, a relation cannot have two identical tuples because it would violate the principle of a
set in relational databases, where all tuples must be unique.

	 4.	 (i)	 Domain: A domain is the set of permissible values that an attribute can have.
		 (ii)	� Constraint: A constraint is a rule that restricts the values that can be stored in a database

to ensure data integrity.
		 (iii)	� Candidate Key: A candidate key is an attribute, or a set of attributes, that can uniquely

identify a tuple in a relation.
		 (iv)	� Alternate Key: An alternate key is any candidate key that is not chosen as the primary

key.
	 5.	 Primary Keys:
	 	 •	 Employee Table: Emp_id
	 	 •	 Department Table: Dept_no
		 Insert Operations:
		 a.	� An insert operation that will be consistent with the current state of the Employee table:
			 INSERT INTO Employee (Emp_id, Name, Dept_no) VALUES ('E005', 'Anjali Gupta', 20);
		 b.	 An insert operation that will be consistent with the current state of the Department table:
			 INSERT INTO Department (Dept_no, Dept_name) VALUES (40, 'Human Resources');
		 c.	� An insert operation that will be inconsistent with the current state of the Employee table,

but would be fine if the Employee table were empty:
			 INSERT INTO Employee (Emp_id, Name, Dept_no) VALUES ('E001', 'Rajesh Kumar', 10);
			 (Note: This will cause a duplicate primary key error because E001 already exists.)
		 d.	 �An insert operation that will be inconsistent with the current state of the Department

table, but would be fine if the Department table were empty:
			 INSERT INTO Department (Dept_no, Dept_name) VALUES (10, 'Finance');
			 (Note: This will cause a duplicate primary key error because 10 already exists.)
		 e.	 An insert operation that will be invalid on the empty table Employee:
			 INSERT INTO Employee (Emp_id, Name, Dept_no) VALUES (NULL, 'Ravi Shastri', 10);
			 (Note: Emp_id cannot be NULL as it is a primary key.)
		 f.	 An insert operation that will be invalid on the empty table Department:
			 INSERT INTO Department (Dept_no, Dept_name) VALUES (NULL, 'Operations');
			 (Note: Dept_no cannot be NULL as it is a primary key.)
		 g.	� Will an operation to delete the tuple having Dept_no 20 be consistent with the current

state of the Employee and Department tables? Justify your answer:

Computer Science with PYTHON72

IMPRINT 1

		 No, it will be inconsistent because there are employees (Emp_id E003) associated with Dept_no
20 in the Employee table. Deleting the department will violate the foreign key constraint.

	 6.	 Primary Keys:
	 	 •	 Employee Table: E_id
	 	 •	 Project Table: P_no
	 	 •	 WorksOn Table: (P_no, E_id) (Composite primary key)
		 Foreign Keys:
	 	 •	 WorksOn Table: P_no (references Project.P_no), E_id (references Employee.E_id)

		 Insert Operations:
		 a.	� A tuple insertion that will be invalid on the empty table Employee:
			� INSERT INTO Employee (E_id, Ename, City, Salary, Department, YearofJoining) VALUES

(NULL, 'Alok Sharma', 'Delhi', 50000, 'HR', 2018);
			 (Note: E_id cannot be NULL as it is a primary key.)
		 b.	 �A tuple insertion that will be invalid on the empty table Project:
			� INSERT INTO Project (P_no, PName, City, DeptName, StartYear) VALUES (NULL, 'New

Project', 'Mumbai', 'IT', 2024);
			 (Note: P_no cannot be NULL as it is a primary key.)
		 c.	 A tuple insertion that will be invalid on the empty table WorksOn:
			 INSERT INTO WorksOn (P_no, E_id) VALUES (1, 1);
			� (Note: Foreign keys P_no and E_id do not exist in the Project and Employee tables

respectively.)
		 d.	 A tuple insertion that will be valid on the empty table Employee:
			� INSERT INTO Employee (E_id, Ename, City, Salary, Department, YearofJoining) VALUES

(1, 'Alok Sharma', 'Delhi', 50000, 'HR', 2018);
		 e.	 A tuple insertion that will be valid on the empty table Project:
			� INSERT INTO Project (P_no, PName, City, DeptName, StartYear) VALUES (1, 'New Project',

'Mumbai', 'IT', 2024);
		 f.	 A tuple insertion that will be valid on the empty table WorksOn:
			 INSERT INTO WorksOn (P_no, E_id) VALUES (1, 1);
			� (Note: This would require the Employee and Project tables to have the corresponding

entries.)
	 7.	 Primary Keys:
	 	 •	 Suppliers Table: SNo
	 	 •	 Parts Table: PNo
	 	 •	 Project Table: JNo

IMPRINT 1

73Computer Science with PYTHON

	 	 •	 Shipment Table: (SNo, PNo, JNo) (Composite primary key)
		 Foreign Keys:
	 	 •	� Shipment Table: SNo (references Suppliers.SNo), PNo (references Parts.

PNo), JNo (references Project.JNo)

	 8.	 Insert Operations:
		 (i)	� An insertion on the empty table Suppliers that will generate an

error:

			� INSERT INTO Suppliers (SNo, SName, Status, SCity) VALUES (NULL, 'ABC Supplies',
'Active', 'Mumbai');

			 (Note: SNo cannot be NULL as it is a primary key.)
		 (ii)	 An insertion on the empty table Parts that will generate an error:

			� INSERT INTO Parts (PNo, PName, Colour, Weight, City) VALUES (NULL, 'Bolt', 'Silver',
50, 'Delhi');

			 (Note: PNo cannot be NULL as it is a primary key.)
		 (iii)	 An insertion on the empty table Suppliers that will be successful:

			� INSERT INTO Suppliers (SNo, SName, Status, SCity) VALUES (1, 'ABC Supplies', 'Active',
'Mumbai');

		 (iv)	 An insertion on the empty table Parts that will be successful:

			� INSERT INTO Parts (PNo, PName, Colour, Weight, City) VALUES (1, 'Bolt', 'Silver', 50,
'Delhi');

		 (v)	 An insertion on the empty table Project that will be successful:

			 INSERT INTO Project (JNo, JName, JCity) VALUES (1, 'Project Alpha', 'Bangalore');
		 (vi)	 An insertion on the empty table Shipment that will be successful:

			 INSERT INTO Shipment (SNo, PNo, JNo, Quantity) VALUES (1, 1, 1, 100);
			� (Note: This would require the Suppliers, Parts, and Project tables to

have the corresponding entries.)

	 9.	 Primary and Foreign Keys:
	 	 •	 Employee Table:
	 		 	 ◊	 Primary Key: employee_id
				 ◊	 Foreign Key: department_id (references Department.department_id)
	 	 •	 Department Table:
				 ◊	 Primary Key: department_id
	 	 •	 Resources Table:
				 ◊	 Primary Key: resource_id
				 ◊	 Foreign Key: department_id (references Department.department_id)

Computer Science with PYTHON74

IMPRINT 1

		 Table Creation Order:
		 1.	 Department (since other tables reference department_id)
		 2.	 Employee
		 3.	 Resources
	 10.	 Entity Integrity:
	 	 •	� Ensures that each table has a primary key and that the column or

columns chosen to be the primary key are unique and not null.

	 	 •	� Example: In the Employee table, employee_id must be unique and not
null.

		 Referential Integrity:
	 	 •	 Ensures that a foreign key value always points to an existing row.
	 	 •	� Example: In the Employee table, department_id must match a department_

id in the Department table.

	 11.	 Insert Operations:
		 (i)	 <18, "Mukesh Agrawal", 11, "C", 88>
	 		 •	 Executed successfully.
		 (ii)	 <21, "Sanjay", 11, "A", 76>
	 		 •	 Executed successfully.
		 (iii)	 <NULL, "Phule Bai", 11, "A", 88>
	 		 •	 Not executed successfully. Violates the primary key constraint (S_ID cannot be NULL).
		 (iv)	 <20, NULL, 11, "A", 88>
	 		 •	 Executed successfully.
		 (v)	 <20, NULL, 11, NULL, NULL>
	 		 •	 Executed successfully.
		 (vi)	 <20, NULL, NULL, NULL, NULL>
	 		 •	 Executed successfully.
	 12.	 Insert Operations:
		 (i)	 <799575933699, NULL, "Pooja", "1990-10-01", 9776626565>
	 		 •	 Not executed successfully. Violates the NOT NULL constraint on last_name.
		 (ii)	 <712349049911, "Singh", "Gagan", "1990-11-11", 9812476543>
	 		 •	 Not executed successfully. Violates the uniqueness constraint on AadharNo.

IMPRINT 1

75Computer Science with PYTHON

 Assertion and Reasoning Based Questions
	 1.	 Correct Answer: (a) Both A and R are true and R is the correct explanation

of A.

	 	 •	� Explanation: This statement is true because constraints ensure data
integrity by enforcing rules on attribute values. Constraints such
as NOT NULL, UNIQUE, PRIMARY KEY, etc., are specified for attributes
to maintain data accuracy and consistency.

	 2.	 Correct Answer: (b) Both A and R are true and R is not the correct
explanation of A.

	 	 •	� Explanation: The relational schema defines the structure of a relation
(table), including attributes and their types. Adding rows or columns
does not change the schema; it changes the instance (data) of the
relation, not its structure.

	 3.	 Correct Answer: (c) A is true but R is false.
	 	 •	� Explanation: The entity set refers to the set of all entities (rows/

tuples) in a relation. Deleting a record removes a tuple from the
entity set, but it does not modify the entity set itself; it reduces
its cardinality.

	 4.	� Correct Answer: (a) Both A and R are true and R is the correct explanation
of A.

	 	 •	� Explanation: This statement is true because in database systems, NULL
represents unknown or missing data. If an attribute like "spouse
name" is not applicable (as in the case of an unmarried candidate),
it would typically be represented as NULL.

 Case-based Questions
When inserting data into tables that have foreign key constraints, it's crucial
to ensure that the referenced records exist. Here's how you can handle the
scenario described:

	 1.	 Inserting a New Department and Employee: To insert a new department
(Dept_No = 6) and a new employee (with manager E0011):

	 	 •	� Step 1: Insert the employee who will be the manager (E0011) into the
Employee table first.

	 	 •	� Step 2: Once the employee record (E0011) exists, then insert the
department (Dept_No = 6) into the Department table, referencing the
manager (E0011).

Computer Science with PYTHON76

IMPRINT 1

	 2.	 This sequence ensures that when you insert the department record, the
foreign key reference to the manager (E0011) exists in the Employee
table, hence preserving referential integrity

	 1.	 Relational Schema:
		 CREATE TABLE myClass (

		 Name VARCHAR(50),

		 Father_Name VARCHAR(50),

		 Contact_Number VARCHAR(15),

		 Birth_Date DATE,

		 Hobbies TEXT,

		 Class VARCHAR(10),

		 PRIMARY KEY (Name)

);

	 	 •	 Primary Key: Name (assuming names are unique within the class).
	 2.	 Table1: Events
		 CREATE TABLE Events (

		 Event_Id INT,

		 Event_Name VARCHAR(50),

		 Event_Date DATE,

		 PRIMARY KEY (Event_Id)

);

	 	 •	 Primary Key: Event_Id
		 Table2: Players
		 CREATE TABLE Players (

		 Player_Id INT,

		 Player_Name VARCHAR(50),

		 Age INT,

		 Event_Id INT,

		 Result VARCHAR(50),

		 PRIMARY KEY (Player_Id),

		 FOREIGN KEY (Event_Id) REFERENCES Events(Event_Id)

);

	 	 •	 Primary Key: Player_Id
	 	 •	 Foreign Key: Event_Id references Events(Event_Id)

IMPRINT 1

77Computer Science with PYTHON

	 3.	 Trains Table:
	 	 •	 Primary Key: TrainID
	 	 •	� Foreign Key: No explicit foreign key constraint shown, assuming TrainID

may reference other tables like Stations or Schedules.

		 Passengers Table:
	 	 •	 Primary Key: RefNo
	 	 •	 Foreign Key: TrainID references Trains(TrainID)
		 Degree and Cardinality:
	 	 •	 Trains Table:
			 ◊	 Degree: 4 (TrainID, TrainName, Source, Destination)
			 ◊	 Cardinality: Number of rows (5 in this case)
	 	 •	 Passengers Table:
			 ◊	 Degree: 4 (RefNo, TrainID, PassengerName, DOJ)
			 ◊	 Cardinality: Number of rows (4 in this case)
			 Can TrainID in Passengers Table have the value 9999?

	 	 •	 �It depends on the constraints defined. Normally, if 9999 is not an
existing TrainID in the Trains table (assuming it's a foreign key),
inserting 9999 into Passengers(TrainID) would violate referential
integrity unless NULLs are allowed.

	Structured Query Language (SQL)

Assessment

A.	 1.	 a	 2.	 b	 3.	 a	 4.	 c	 5.	 a	 6.	 b
	 7.	 b	 8.	 b	 9.	 d	 10.	 d	 11.	 b	 12.	 c
	 13.	 a	 14.	 d	 15.	 b	 16.	 c
B.	 1.	 False	 2.	 False	 3.	 True	 4.	 True	 5.	 True
	 6.	 False
C.	 1.	 DISTINCT	 2.	 primary	 3.	 CHECK constraint	 4.	 UNIQUE
	 5.	 GROUP BY	 6.	 outer, inner		 7.	 ORDER BY
D.	 1.	 (i)	 To view the list of databases:

			 SHOW DATABASES;

10.

Computer Science with PYTHON78

IMPRINT 1

		 (ii)	 To start using the database named TEST:

			 USE TEST;
		 (iii)	 To view the structure of table PRACTICE:
			 DESCRIBE PRACTICE;
		 (iv)	 To display all the records from table PRACTICE:
			 SELECT * FROM PRACTICE;
	 2.	 ORDER BY: This clause is used to sort the result set in either ascending

or descending order. It does not affect the grouping of rows.

		 Example:

		 SELECT * FROM Employee ORDER BY Salary DESC;

		 GROUP BY: This clause is used to arrange identical data into groups.
It is often used with aggregate functions like COUNT, SUM, AVG, etc.

		 Example:

		 SELECT Dept_no, COUNT(*) FROM Employee GROUP BY Dept_no;

	 3.	 Wildcard Characters for Pattern Matching with LIKE
	 	 •	 %: Matches any sequence of characters (including zero characters).
	 	 •	 _: Matches any single character.
	 4.	 (i)	 CREATE TABLE statement for table TEACHER:

			 CREATE TABLE TEACHER (

			 ID CHAR(5) PRIMARY KEY,

			 First_Name VARCHAR(50),

			 Last_Name VARCHAR(50),

			 Dept VARCHAR(50),

			 Contact_Num VARCHAR(15),

			 Salary INT,

			 Email_ID VARCHAR(100)

);

		 (ii)	 SELECT Statements:

			 a.	List the salary of those teachers whose name starts with 'S':
				 SELECT Salary FROM TEACHER WHERE First_Name LIKE 'S%';

			 b.	�List the first name and last name of the teachers who have salary
more than 70000:

				 SELECT First_Name, Last_Name FROM TEACHER WHERE Salary > 70000;

IMPRINT 1

79Computer Science with PYTHON

			 c.	 List the count of number of teachers of each department:
				 SELECT Dept, COUNT(*) FROM TEACHER GROUP BY Dept;

			 d.	�List the first name and contact number of teachers whose mail ID
is not known:

				� SELECT First_Name, Contact_Num FROM TEACHER WHERE Email_ID IS
NULL;

			 e.	�Display the rows from the table TEACHER in descending order of
salary:

				 SELECT * FROM TEACHER ORDER BY Salary DESC;

			 f.	 Add an attribute Subject to the table TEACHER:

				 ALTER TABLE TEACHER ADD Subject VARCHAR(50);

			 g.	Drop attribute Email_ID from the table TEACHER:
				 ALTER TABLE TEACHER DROP COLUMN Email_ID;

		 (iii)	Output of SQL Queries:
			 a.	SELECT AVG(Salary) FROM TEACHER WHERE Dept = 'Economics';
				 Output:

				 67500

			 b.	�SELECT First_Name, Last_Name, Contact_Num FROM TEACHER WHERE
Salary BETWEEN 40000 AND 80000;

				 Output:

				 Naishadh Kumar 9965789799

				 Tenzin Wangdi 8023456780

				 Krishan Kumar 9977885566

			 c.	 SELECT DISTINCT Dept FROM TEACHER;
				 Output:

				 Political Science

				 English

				 History

				 Computer Science

				 Economics

			 d.	�SELECT MAX(Salary) FROM TEACHER GROUP BY Dept HAVING Dept =
'Political Science';

				 Output:

				 85000

Computer Science with PYTHON80

IMPRINT 1

	 5.	 (i)	 CREATE TABLE statement for table STUDENT:

			 CREATE TABLE STUDENT (

			 Roll_Num INT PRIMARY KEY,

			 Student_Name VARCHAR(50),

			 Course_Name VARCHAR(50),

			 Duration INT,

			 Fee INT,

			 Batch_Prefer VARCHAR(10)

);

		 (ii)	 SELECT Statements:

			 a.	List the names of students in each course:
				 SELECT Student_Name FROM STUDENT;
			 b.	� Display the course name along with their duration for the courses

whose fee is more than 30000:

				 SELECT Course_Name, Duration FROM STUDENT WHERE Fee > 30000;
			 c.	 Display the names of students in alphabetical order:

				 SELECT Student_Name FROM STUDENT ORDER BY Student_Name;
			 d.	 Display the count of students who prefer the Evening batch:
				 SELECT COUNT(*) FROM STUDENT WHERE Batch_Prefer = 'Evening';
			 e.	 Display the average duration of courses from the table:
				 SELECT AVG(Duration) FROM STUDENT;
			 f.	 Increase the fee by 10% for Mobile App course:

				 UPDATE STUDENT SET Fee = Fee * 1.10 WHERE Course_Name = 'Mobile App';
			 g.	� Delete rows from table student where duration of the course is

not known:

				 DELETE FROM STUDENT WHERE Duration IS NULL;
		 (iii)	 Output of SQL Queries:
			 a.	 SELECT * FROM STUDENT WHERE Student_Name LIKE '%h' AND Fee < 25000;
				 Output:

				
			 b.	 SELECT MIN(Fee) FROM STUDENT GROUP BY Batch_Prefer;

IMPRINT 1

81Computer Science with PYTHON

				 Output:

				
			 c.	� SELECT Roll_Num, Course_Name, Duration FROM STUDENT ORDER BY Duration

DESC;
				 Output:

				
	 6.	 (i)	 SELECT Statements:

			 a.	 �List the names of salespersons who are dealing with Books in
Noida.

				 SELECT Name
				 FROM SALESPERSON
				 WHERE Product = 'Books' AND City = 'Noida';
				 Output:

				
			 b.	 Display the names of cities without any repetition.
				 SELECT DISTINCT City
				 FROM SALESPERSON;

				 Output:

				

Computer Science with PYTHON82

IMPRINT 1

			 c.	 Display the count of salespersons in each city.

				 SELECT City, COUNT(*) AS Salesperson_Count
				 FROM SALESPERSON
				 GROUP BY City;
				 Output:

				
			 d.	� Display the name and salary of salespersons in descending order

of Salary.

				 SELECT Name, Salary
				 FROM SALESPERSON
				 ORDER BY Salary DESC;
				 Output:

				
			 e.	 Delete the salesperson whose salary is more than 60000.
				 DELETE FROM SALESPERSON
				 WHERE Salary > 60000;
				 After this operation, YOGRAJ SINHA will be removed from the table.

			 f.	 �Add a field Contact_No in the table SALESPERSON to store the
mobile number of salespersons.

				 ALTER TABLE SALESPERSON
				 ADD Contact_No VARCHAR(15);
		 (ii)	 Updated Outputs for the given SQL queries:

			 a.	 SELECT Product, SUM(Salary) FROM SALESPERSON GROUP BY Product;

IMPRINT 1

83Computer Science with PYTHON

				 Output:

				
			 b.	 SELECT Name, Salary FROM SALESPERSON WHERE Product IN ('Toys','Footwear');
				 Output:

				
			 c.	� SELECT Code, Name FROM SALESPERSON WHERE Salary > 50000 AND Name LIKE

'%E%';
				 Output:

				
			 d.	 SELECT AVG(Salary) FROM SALESPERSON WHERE CITY='Gurugram';
				 Output:

				
	 7.	 (i)	 SQL Queries

			 a.	� To insert a new tuple in the MOBILE table whose M_Price is not
yet known.

	 			 INSERT INTO MOBILE (M_Id, M_Company, M_Name, Launch_Date)

	 			 VALUES ('MB007', 'OnePlus', 'OnePlus5', NULL, '2018-01-01');
			 b.	� Display the mobile name and name of the company of the mobile

phones whose price is greater than 5000.

				 SELECT M_Name, M_Company
				 FROM MOBILE
				 WHERE M_Price > 5000;

Computer Science with PYTHON84

IMPRINT 1

				 Output:

				 +---------+-----------+
				 | M_Name | M_Company |
				 +---------+-----------+
				 | XperiaM | Sony |
				 | SefieEx | Oppo |
				 +---------+-----------+

			 c.	� List the name of the mobile phones along with their price that
were launched in the year 2017.

				 SELECT M_Name, M_Price
				 FROM MOBILE
				 WHERE YEAR(Launch_Date) = 2017;
				 Output:

				 +----------+---------+
				 | M_Name | M_Price |
				 +----------+---------+
				 | XperiaM | 7500 |
				 +----------+---------+

			 d.	� Display M_Company, M_Name, and M_Price in descending order of
their launch date.

				 SELECT M_Company, M_Name, M_Price
				 FROM MOBILE
				 ORDER BY Launch_Date DESC;
				 Output:

				 +-----------+---------+---------+
				 | M_Company | M_Name | M_Price |
				 +-----------+---------+---------+
				 | Sony | XperiaM | 7500 |
				 | Micromax | Unite3 | 4500 |
				 | Samsung | Galaxy | 4500 |
				 | Nokia | N1100 | 2250 |
				 | Oppo | SefieEx | 8500 |
				 +-----------+---------+---------+

			 e.	� List the details of a mobile whose name starts with "S" or ends
with "a".

				 SELECT *
				 FROM MOBILE

IMPRINT 1

85Computer Science with PYTHON

				 WHERE M_Name LIKE 'S%' OR M_Name LIKE '%a';
				 Output:

				 +-------+-----------+---------+---------+-------------+
				 | M_Id | M_Company | M_Name | M_Price | Launch_Date |
				 +-------+-----------+---------+---------+-------------+
				 | MB001 | Samsung | Galaxy | 4500 | 2013-02-12 |
				 | MB006 | Oppo | SefieEx | 8500 | 2010-08-21 |
				 +-------+-----------+---------+---------+-------------+

			 f.	� Display the names of the mobile companies having prices between
3000 and 5000.

				 SELECT M_Company
				 FROM MOBILE
				 WHERE M_Price BETWEEN 3000 AND 5000;
				 Output:

				 +-----------+
				 | M_Company |
				 +-----------+
				 | Samsung |
				 | Micromax |
				 +-----------+

		 (ii)	 Outputs for the given SQL queries

			 a.	 SELECT MAX(Launch_Date), MIN(Launch_Date) FROM MOBILE;
				 Output:

				 +------------------+------------------+
				 | MAX(Launch_Date) | MIN(Launch_Date) |
				 +------------------+------------------+
				 | 2017-11-20 | 2010-08-21 |
				 +------------------+------------------+

			 b.	 SELECT AVG(M_Price) FROM MOBILE;
				 Output:

				 +--------------+
				 | AVG(M_Price) |
				 +--------------+
				 | 5450.00 |
				 +--------------+

			 c.	� SELECT M_Name, Launch_Date FROM MOBILE WHERE M_Company='Nokia' OR
M_Price IS NULL;

Computer Science with PYTHON86

IMPRINT 1

				 Output:

				 +--------+--------------+
				 | M_Name | Launch_Date |
				 +--------+--------------+
				 | N1100 | 2011-04-15 |
				 | OnePlus5 | 2018-01-01 |
				 +--------+--------------+

		 The OnePlus5 entry is included since it has a NULL price, matching the
condition.

	 8.	 (i)	 SQL Queries

			 a.	To display details of all trains which start from Pune Junction.
	 			 SELECT * FROM TRAINS
	 			 WHERE Start = 'Pune Junction';
				 Output:

				

			 b.	�To display details of trains that have a duration of more than
15 hours.

	 			 SELECT * FROM TRAINS
	 			 WHERE Journey_Time > 15;
				 Output:

				

			 c.	 To display the names of trains that end with the word "Shatabdi".
	 			 SELECT TName FROM TRAINS

	 			 WHERE TName LIKE '%Shatabdi';
				 Output:

				

IMPRINT 1

87Computer Science with PYTHON

			 d.	To delete the record of trains that start from Jaynagar.
	 			 DELETE FROM TRAINS
	 			 WHERE Start = 'Jaynagar';
			 e.	To change the duration of Swarna Shatabdi to 7 hours.
	 			 UPDATE TRAINS
	 			 SET Journey_Time = 7
	 			 WHERE TName = 'Swarna Shatabdi';
			 f.	 To display the count of trains that end at New Delhi.

	 			 SELECT COUNT(*) AS Train_Count
	 			 FROM TRAINS
	 			 WHERE End = 'New Delhi';
				 Output:

				

		 (ii)	 Outputs for the given SQL queries

	 		 a.	 SELECT START, COUNT(*) FROM TRAINS GROUP BY START HAVING COUNT(*)>1;
				 Output:

				

			 b.	 SELECT TNO, TName FROM TRAINS WHERE Journey_Time > 6 ORDER BY TNO;
				 Output:

				

Computer Science with PYTHON88

IMPRINT 1

	 		 c.	� SELECT Start, End, COUNT(*) FROM TRAINS GROUP BY Start, End HAVING
COUNT(*)=2;

				 Output:

				

	 9.	 (i)	 Write the command to create the table STUDENT.

			 CREATE TABLE STUDENT (

			 RollNO INT PRIMARY KEY,

			 Name VARCHAR(50),

			 Class VARCHAR(5),

			 DOB DATE,

			 Gender CHAR(1),

			 City VARCHAR(50),

			 Marks INT

);

	 	 (ii)	� Write an SQL command to insert a new tuple in the table STUDENT
whose values are:

			� Roll No-10, Name-Aziz, Class-XI, DOB: 15-7-1996, Gender-M, City-
Delhi, and marks are not yet known.

			 INSERT INTO STUDENT (RollNO, Name, Class, DOB, Gender, City)

			 VALUES (10, 'Aziz', 'XI', '1996-07-15', 'M', 'Delhi');

	 	 (iii)	 Write SQL queries for the following based on the table STUDENT:
			 (a)	To display the average marks in each class.
				 SELECT Class, AVG(Marks) AS AvgMarks

				 FROM STUDENT

				 GROUP BY Class;

	 		 (b)	To display the average marks in each class, gender-wise.
				 SELECT Class, Gender, AVG(Marks) AS AvgMarks

				 FROM STUDENT

				 GROUP BY Class, Gender;

	 		 (c)	To display the number of students in each city.
				 SELECT City, COUNT(*) AS NumberOfStudents

IMPRINT 1

89Computer Science with PYTHON

				 FROM STUDENT

				 GROUP BY City;

	 		 (d)	� To display the records from table STUDENT in alphabetical order
of the names of the students.

				 SELECT *

				 FROM STUDENT

				 ORDER BY Name;

			 (e)	� To display RollNO, Class, DOB and City for students whose marks
are between 450 and 551.

				 SELECT RollNO, Class, DOB, City

				 FROM STUDENT

				 WHERE Marks BETWEEN 450 AND 551;

			 (f)	 To increase marks of all students by 20 who are in class XII.
				 UPDATE STUDENT

				 SET Marks = Marks + 20

				 WHERE Class = 'XII';

		 (iv)	� What will be the output produced on the execution of each of the
following queries:

	 		 (a)	 SELECT COUNT(*), City FROM STUDENT GROUP BY CITY HAVING COUNT(*)>1;
				� This query will display the number of students in each city where

there is more than one student. The output will be:

				 +----------+--------+
				 | COUNT(*) | City |
				 +----------+--------+
				 | 2 | Delhi |
				 | 2 | Moscow |
				 | 2 | Mumbai |
				 +----------+--------+

	 		 (b)	 SELECT MAX(DOB), MIN(DOB) FROM STUDENT;
				� This query will display the latest and earliest dates of birth

from the STUDENT table. The output will be:

				 +------------+------------+
				 | MAX(DOB) | MIN(DOB) |
				 +------------+------------+
				 | 1995-12-08 | 1993-05-07 |
				 +------------+------------+

Computer Science with PYTHON90

IMPRINT 1

	 		 (c)	 SELECT NAME, GENDER FROM STUDENT WHERE CITY='Delhi';
				� This query will display the names and genders of students who

are from Delhi. The output will be:

				 +-------+--------+
				 | Name | Gender +
				 +-------+--------+
				 | Sanal | F |
				 | Store | M |
				 +-------+--------+

	 10.	 (i)	 SQL Statement to Create the Table

			 CREATE TABLE ACCOUNTS (

			 ANo INT PRIMARY KEY,

			 AName VARCHAR(50),

			 Branch VARCHAR(50),

			 Contact_Number VARCHAR(15),

			 Balance_Amount DECIMAL(10, 2),

			 Account_Type VARCHAR(20)

);

	 	 (ii)	 SQL Command to Insert a New Tuple

			� INSERT INTO ACCOUNTS (ANo, AName, Branch, Contact_Number, Balance_
Amount, Account_Type)

			 VALUES (106, 'Joe Mathews', 'Goa', NULL, 76392.90, 'Savings');

		 (iii)	 SQL Queries
	 		 a.	� To display details of all account holders who have a savings

account

	 			 SELECT * FROM ACCOUNTS WHERE Account_Type = 'Savings';
			 b.	� To display the Name and Contact Number of all account holders

Branch wise

	 			 SELECT Branch, AName, Contact_Number FROM ACCOUNTS ORDER BY Branch;
	 		 c.	� To display the names of the account holders whose balance is less

than 20000

	 			 SELECT AName FROM ACCOUNTS WHERE Balance_Amount < 20000;
	 		 d.	� To display Name and Branch of account holders whose contact number

is not known

	 			 SELECT AName, Branch FROM ACCOUNTS WHERE Contact_Number IS NULL;

IMPRINT 1

91Computer Science with PYTHON

	 		 e.	 To display the names of Branch only once

	 			 SELECT DISTINCT Branch FROM ACCOUNTS;
	 	 (iv)	Output of the Given SQL Queries
	 		 a.	� SELECT ANO, ANAME FROM ACCOUNTS WHERE BRANCH NOT IN ('CHENNAI',

'BANGALORE');
	 			� This query selects the account number and name of the account

holders whose branch is neither 'Chennai' nor 'Bangalore'. The
output will be:

	 			 +-----+-------------+
	 			 | ANo | AName |
	 			 +-----+-------------+
	 			 | 103 | Ali Reza |
	 			 | 105 | Simran Kaur |
	 			 +-----+--------------+

	 		 b.	 SELECT DISTINCT ANO FROM ACCOUNTS;
	 			� This query selects distinct account numbers from the ACCOUNTS

table. Since all account numbers are unique, the output will be:

	 			 +-----+
	 			 | ANo |
	 			 +-----+
	 			 | 101 |
	 			 | 102 |
	 			 | 103 |
	 			 | 104 |
	 			 | 105 |
	 			 +-----+

	 		 c.	� SELECT ANO, COUNT(*), BALANCE_AMOUNT FROM ACCOUNTS GROUP BY ANO
HAVING COUNT(*)> 1;

	 			� This query groups the results by account number and counts the
number of rows for each account number, then filters the results
to only show groups with more than 1 row. Since each account
number is unique, the count will always be 1 for each, so no rows
will meet the HAVING COUNT(*) > 1 condition. The output will be:

	 			 Empty set

 Assertion and Reasoning Based Questions
	 1.	 d	 2.	 c	 3.	 b

Computer Science with PYTHON92

IMPRINT 1

 Case-based Questions
	 1.	 (i)	 Display the structure of the table:

			 DESCRIBE Stationary;

		 (ii)	 Display records whose quantity is less than 5:

			 SELECT * FROM Stationary WHERE QTY < 5;

	 	 (iii)	� Display the name and price of stationary items whose names end
with 'Marker':

			 SELECT SNAME, PRICE FROM Stationary WHERE SNAME LIKE '%Marker';

	 	 (iv)	 Display the price of the most expensive item:

			 SELECT MAX(PRICE) FROM Stationary;

	 	 (v)	 Display the average price of all items:

			 SELECT AVG(PRICE) FROM Stationary;

	 	 (vi)	 Display the brand name and count of items of each brand:

			 SELECT BRAND, COUNT(*) FROM Stationary GROUP BY BRAND;

	 	 (vii)	 Display the total number of records in the table:

			 SELECT COUNT(*) FROM Stationary;

	 	 (viii)	 Display the records in descending order of quantity:
			 SELECT * FROM Stationary ORDER BY QTY DESC;

	 	 (ix)	 Display the records whose price is not known:

			 SELECT * FROM Stationary WHERE PRICE IS NULL;

	 	 (x)	 Display the name of each brand only once:

			 SELECT DISTINCT BRAND FROM Stationary;

	 2.	 (i)	 Display the name and price of each watch:

			 SELECT WName, Price FROM Watches;

	 	 (ii)	 Change the price of Apple iWatch to 59350:

			 UPDATE Watches SET Price = 59350 WHERE WName = 'Apple iWatch';

	 	 (iii)	 Display the records of all Sports watches:

			 SELECT * FROM Watches WHERE Type = 'Sports Watch';

	 	 (iv)	 Display the names of all brands, without repetition:

			 SELECT DISTINCT Brand FROM Watches;

	 	 (v)	 Display the count of designer watches:

			 SELECT COUNT(*) FROM Watches WHERE Type = 'Designer';

IMPRINT 1

93Computer Science with PYTHON

	 	 (vi)	 Display the count of watches of each brand:

			 SELECT Brand, COUNT(*) FROM Watches GROUP BY Brand;

	 	 (vii)	� Display the name and brand of watches that have been purchased in
the year 2020:

			 SELECT WName, Brand FROM Watches WHERE YEAR(YOP) = 2020;

	SQL—Working with Multiple Tables

Assessment

A.	 1.	 c	 2.	 c	 3.	 b	 4.	 a
B.	 1.	 True	 2.	 True	 3.	 False	 4.	 False	 5.	 False
C.	 1.	 attributes	 2.	 equality	 3.	 foreign	 4.	 primary
D.	 1.	 Referential Integrity Constraints: Referential integrity constraints

ensure that a foreign key value always refers to an existing primary
key value in another table.

		 Example:
	 	� An EMPLOYEE works in a DEPARTMENT, these two entities are related via Dept_No of the

table EMPLOYEE, which refers to the primary key Dept_No of DEPARTMENT.
	 	� DBMS uses foreign keys to enforce the integrity of the database. For example, DBMS will

disallow an attempt to insert a tuple in the EMPLOYEE table having a Dept_No that is not
present in the DEPARTMENT table. Using SQL, we can specify Dept_No as a foreign key in
the table EMPLOYEE and indicate that it references the primary key Dept_No of the table
DEPARTMENT as follows:

		 FOREIGN KEY (Dept_No) REFERENCES DEPARTMENT (Dept_No)

		 CREATE TABLE EMPLOYEE

		 (

		 ID INT PRIMARY KEY,

		 FName VARCHAR(20) NOT NULL,

		 LName VARCHAR(20) NOT NULL,

		 Gender CHAR(1) NOT NULL,

		 Address VARCHAR(30),

		 City VARCHAR(20),

		 Pin_Code CHAR(6),

11.

Computer Science with PYTHON94

IMPRINT 1

		 DOB DATE,

		 Salary INT NOT NULL,

		 Dept_No SMALLINT,

		 FOREIGN KEY(Dept_No) REFERENCES DEPARTMENT(Dept_No)

);

	 2.	 SQL supports a NATURAL JOIN operator that removes the duplicate column common
to both the tables and positions the common attribute as the first column in the result. A
NATURAL JOIN query to get the details of all the managers of all the departments may be
formulated as follows:

		 SELECT *

		 FROM EMPLOYEE

		 NATURAL JOIN DEPARTMENT;

	 3.	 Suppose we want to get complete details of all the departments’ managers.
The following SQL query joins the tables EMPLOYEE and DEPARTMENT to
achieve this:

		 SELECT *

		 FROM DEPARTMENT, EMPLOYEE

		 WHERE EMPLOYEE.Dept_No = DEPARTMENT.Dept_No;

		 Note that the result of executing the above query yields the column
Dept_No twice, once for each table. As the above query joins only
those tuples which have identical values of Dept_No, such a join is
called equijoin.

E.	 1.	 a.	 SELECT STUDENT.Roll_Num, SUBJECT.Subject_Name
			 FROM STUDENT

			 JOIN SUBJECT ON STUDENT.Subject_No = SUBJECT.Subject_No;

	 	 b.	 SELECT STUDENT.Roll_Num, STUDENT.Subject_Name, SUBJECT.Dept_No
			 FROM STUDENT

			 JOIN SUBJECT ON STUDENT.Subject_No = SUBJECT.Subject_No;

	 	 c.	 SELECT STUDENT.Roll_Num, STUDENT.Subject_Name

			 FROM STUDENT

			 JOIN SUBJECT ON STUDENT.Subject_No = SUBJECT.Subject_No

			 WHERE SUBJECT.Subject_Name = 'Chemistry';

	 	 d.	 SELECT STUDENT.Subject_Name
			 FROM STUDENT

			 JOIN SUBJECT ON STUDENT.Subject_No = SUBJECT.Subject_No

IMPRINT 1

95Computer Science with PYTHON

			 WHERE SUBJECT.Subject_Name = 'Physics';

	 	 e.	 SELECT SUBJECT.Subject_Name, COUNT(STUDENT.Roll_Num) AS StudentCount
			 FROM SUBJECT

			 LEFT JOIN STUDENT ON SUBJECT.Subject_No = STUDENT.Subject_No

			 GROUP BY SUBJECT.Subject_Name;

	 	 f.	 SELECT SUBJECT.Subject_Name, STUDENT.Roll_Num, STUDENT.Subject_Name

			 FROM SUBJECT

			 LEFT JOIN STUDENT ON SUBJECT.Subject_No = STUDENT.Subject_No;

	 2.	 a.	 SELECT DEPARTMENT.Dept_Name, SUBJECT.Subject_Name
			 FROM DEPARTMENT

			 JOIN SUBJECT ON DEPARTMENT.Dept_No = SUBJECT.Dept_No

			 ORDER BY DEPARTMENT.Dept_Name, SUBJECT.Subject_Name;

	 	 b.	� SELECT DEPARTMENT.Dept_Name, COUNT(SUBJECT.Subject_No) AS
NumberOfSubjects

			 FROM DEPARTMENT

			 LEFT JOIN SUBJECT ON DEPARTMENT.Dept_No = SUBJECT.Dept_No

			 GROUP BY DEPARTMENT.Dept_Name;

	 	 c.	 SELECT SUBJECT.Subject_Name, SUBJECT.Dept_No

			 FROM SUBJECT

			� WHERE SUBJECT.Subject_No IN (SELECT DISTINCT Subject_No FROM TEACHER);

	 3.	 a.	 SELECT *
			 FROM PASSENGERS

			 WHERE TNO = 12030;

			 Output: |

			 +------+-------+------------+--------+-----+------------+
			 | PNR | TNO | PNAME | GENDER | AGE | TRAVELDATE |
			 +------+-------+------------+--------+-----+------------+
			 | P004 |	 12030 | S K SAXENA | MALE | 42 | 2018-10-12 |
			 | P005 | 12030 | S SAXENA | FEMALE | 35 | 2018-10-12 |
			 | P006 | 12030 | P SAXENA | FEMALE | 12 | 2018-10-12 |
			 | P008 | 12030 | J K SHARMA | MALE | 65 | 2018-05-09 |
			 | P009 | 12030 | R SHARMA | FEMALE | 58 | 2018-05-09 |
			 +------+-------+------------+--------+-----+------------+

	 	 b.	 SELECT COUNT(*) AS FemalePassengers
			 FROM PASSENGERS

			 WHERE TNO = 12030 AND GENDER = 'FEMALE';

Computer Science with PYTHON96

IMPRINT 1

			 Output:

			 +------------------+
			 | FemalePassengers |
			 +------------------+
			 | 3 |
			 +------------------+

	 	 c.	 SELECT P.PNAME, T.TNAME

			 FROM PASSENGERS P

			 JOIN TRAINS T ON P.TNO = T.TNO;

			 Output:

	 		 +-------------+-----------------+
	 		 | PNAME | TNAME |
	 		 +-------------+-----------------+
	 		 | R N AGRAWAL | Amritsar Mail |
	 		 | P TIWARY | Ajmer Shatabdi |
	 		 | S TIWARY | Ajmer Shatabdi |
	 		 | S K SAXENA | Swarna Shatabdi |
	 		 | S SAXENA | Swarna Shatabdi |
	 		 | P SAXENA | Swarna Shatabdi |
	 		 | N S SINGH | Amritsar Mail |
	 		 | J K SHARMA | Swarna Shatabdi |
	 		 | R SHARMA | Swarna Shatabdi |
	 		 +-------------+-----------------+

	 	 d.	 SELECT DISTINCT TRAVELDATE
			 FROM PASSENGERS

			 JOIN TRAINS ON PASSENGERS.TNO = TRAINS.TNO

			 WHERE TRAINS.TNAME = 'Ajmer Shatabdi';

			 Output:

			 +------------+
			 | TRAVELDATE |
			 +------------+
			 | 2018-10-12 |
			 +------------+

	 	 e.	 Part a.
			 Output:

	 		 +-----------------+-------------+
	 		 | TNAME | PNAME |
	 		 +-----------------+-------------+
	 		 | Amritsar Mail | R N AGRAWAL |
	 		 | Swarna Shatabdi | S K SAXENA |
	 		 +-------------+-----------------+

IMPRINT 1

97Computer Science with PYTHON

			 Part b.

			 Output:

	 		 +-------+-----------------+--------------+
	 		 | TNO | TNAME | NoOfBookings |
	 		 +-------+-----------------+--------------+
	 		 | 12015 | Ajmer Shatabdi | 2 |
	 		 | 12030 | Swarna Shatabdi | 5 |
	 		 | 13005 | Amritsar Mail | 2 |
	 		 +-------+-----------------+--------------+

	 4.	 (i)	 a.	 SELECT SHIPMENT.OrderNo, PRODUCT.Pname

				 FROM SHIPMENT

				 JOIN PRODUCT ON SHIPMENT.PNo = PRODUCT.PNo;

	 		 b.	 SELECT SHIPMENT.OrderNo

				 FROM SHIPMENT

				 JOIN PRODUCT ON SHIPMENT.PNo = PRODUCT.PNo

				 WHERE PRODUCT.Brand = ‘Whirlpool’;

	 		 c.	 SELECT DISTINCT PRODUCT.Pname

				 FROM SHIPMENT

				 JOIN PRODUCT ON SHIPMENT.PNo = PRODUCT.PNo

				 WHERE SHIPMENT.Price > 70000;

	 		 d.	� SELECT PRODUCT.Pname, MIN(SHIPMENT.Price) AS MinPrice, SHIPMENT.
SNo

				 FROM SHIPMENT

				 JOIN PRODUCT ON SHIPMENT.PNo = PRODUCT.PNo

				 GROUP BY PRODUCT.Pname, SHIPMENT.SNo;

	 		 e.	 SELECT PRODUCT.City, SUM(SHIPMENT.Quantity) AS TotalQuantity

				 FROM SHIPMENT

				 JOIN PRODUCT ON SHIPMENT.PNo = PRODUCT.PNo

				 GROUP BY PRODUCT.City;

	 	 (ii)	 a.	 SELECT SUPPLIER.Sname

				 FROM SUPPLIER

				 JOIN SHIPMENT ON SUPPLIER.SNo = SHIPMENT.SNo

				 WHERE SHIPMENT.PNo = 201;

	 		 b.	 SELECT SUPPLIER.Sname

				 FROM SUPPLIER

Computer Science with PYTHON98

IMPRINT 1

				 JOIN SHIPMENT ON SUPPLIER.SNo = SHIPMENT.SNo

				 GROUP BY SUPPLIER.Sname

				 HAVING COUNT(SHIPMENT.OrderNo) > 2;

	 		 c.	 SELECT SUPPLIER.Sname, COUNT(SHIPMENT.OrderNo) AS NumberOfOrders

				 FROM SUPPLIER

				 JOIN SHIPMENT ON SUPPLIER.SNo = SHIPMENT.SNo

				 GROUP BY SUPPLIER.Sname;

	 		 d.	 SELECT DISTINCT SUPPLIER.Sname

				 FROM SUPPLIER

				 JOIN SHIPMENT ON SUPPLIER.SNo = SHIPMENT.SNo

				 WHERE SUPPLIER.SCity = 'Mumbai' AND SHIPMENT.Price > 50000;

	 		 e.	 SELECT DISTINCT SUPPLIER.Sname

				 FROM SUPPLIER

				 JOIN SHIPMENT ON SUPPLIER.SNo = SHIPMENT.SNo

				 WHERE SUPPLIER.SCity = 'Mumbai' AND SHIPMENT.Quantity > 40;

	 		 f.	 SELECT SHIPMENT.*

				 FROM SHIPMENT

				 JOIN SUPPLIER ON SHIPMENT.SNo = SUPPLIER.SNo

				 WHERE SUPPLIER.SCity = 'Karnataka';

 Assertion and Reasoning Based Questions
	 1.	 a	 2.	 a

 Case-based Questions
	 a.	 SELECT Theatre.AUDI, Troupe.TNAME
		 FROM Theatre

		 JOIN Troupe ON Theatre.TROUPID = Troupe.TROUPID;

	 b.	 SELECT Troupe.TNAME, Theatre.TITLE, Theatre.TICKET_PRICE
		 FROM Theatre

		 JOIN Troupe ON Theatre.TROUPID = Troupe.TROUPID

		 WHERE Theatre.AUDI = 1;

	 c.	 SELECT LANGUAGE, COUNT(*) AS PlayCount
		 FROM Theatre

		 GROUP BY LANGUAGE;

IMPRINT 1

99Computer Science with PYTHON

	 d.	 SELECT TNAME
		 FROM Troupe

		 ORDER BY TNAME;

	 e.	 SELECT Theatre.TITLE, Troupe.TNAME
		 FROM Theatre

		 JOIN Troupe ON Theatre.TROUPID = Troupe.TROUPID

		 WHERE Troupe.CITY = ‘Delhi’

		 ORDER BY Theatre.SHOWDATE;

	 f.	 ALTER TABLE Troupe
		 ADD COLUMN CONTACTNO VARCHAR(10);

	Python Interface with MySQL

Assessment

A.	 1.	 b	 2.	 a	 3.	 c	 4.	 d	 5.	 a	 6.	 d
	 7.	 c	 8.	 c
B.	 1.	 False	 2.	 True	 3.	 False	 4.	 False	 5.	 True
C.	 1.	 connect()	 2.	 cursor()	 3.	 SQL queries	 4.	 format()	 5.	 rowcount
D.	 1.	 Two methods to pass values of attributes to the SQL query in the execute() method are:
		 •	� Using positional placeholders (%s): This method uses %s as a placeholder in the SQL

query, and a tuple containing the values is passed as the second argument to the execute()
method.

		 •	� Using named placeholders (%(name)s): This method uses named placeholders in the
SQL query, and a dictionary containing the key-value pairs for the attributes is passed as
the second argument to the execute() method.

	 2.	 We may also use the format() method to provide attribute values in a tuple. The substitutions
in the string are specified using curly braces ‘{‘ and ‘}’, and the corresponding values to be
substituted are passed as the comma-separated list of arguments. The resultant string also
referred as formatted string can then be used as a query to be executed by execute() method
as shown in following code snippet:

	 	 �#Using placeholder for inserting user-provided attribute values into
the row

	 	 print(“Enter the Employee details:”)
	 	 aadhaar = input(“ID: “)

12.

Computer Science with PYTHON100

IMPRINT 1

	 	 name = input(“Name: “)
	 	 gender = input(“Gender: “)
	 	 salary = int(input(“Salary: “))
	 	 dno = int(input(“Department Number: “))
	 	 query = “INSERT INTO EMPLOYEE VALUES(‘{}’, ‘{}’, ‘{}’, {}, {});”\
	 	 .format(aadhaar, name, gender, salary, dno)
	 	 company.execute(query)

	 3.	 Yes, the following two statements for inserting a row in STUDENT table are equivalent
because the order of key-value pairs in the dictionary does not matter as long as the keys
match the placeholders in the query.

	 4.	 Reading from a CSV file:
		 import csv

		 with open(‘fileName.csv’, mode=’r’) as file:

		 csvReader = csv.reader(file)

		 for row in csvReader:

		 # process each row

		

		 Writing to a CSV file:

		 import csv

		 with open(‘fileName.csv’, mode=’w’, newline=’’) as file:

		 csvWriter = csv.writer(file)

		 �csvWriter.writerow([‘column1’, ‘column2’, ‘column3’]) # writing
header

		 csvWriter.writerow([value1, value2, value3]) # writing rows

	 5.	 import pymysql
		 # Establish connection to the database

		 def connectToDatabase():

		 return pymysql.connect(

		 host='localhost',

		 user='your_username',

		 password='your_password',

		 database='SCHOOL'

)

		

IMPRINT 1

101Computer Science with PYTHON

		 # Function to enter data into the TEACHER table

		 def enterData():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 id = int(input("Enter Teacher ID: "))

		 firstName = input("Enter First Name: ")

		 lastName = input("Enter Last Name (or NULL if not applicable): ")

		 if lastName.upper() == 'NULL':

		 lastName = None

		 subjectNo = int(input("Enter Subject No: "))

		 contactNum = input("Enter Contact Number: ")

		 salary = float(input("Enter Salary: "))

		 emailID = input("Enter Email ID: ")

		

		 �sql = "INSERT INTO TEACHER (ID, First_Name, Last_Name, Subject_No,
Contact_Num, Salary, Email_ID) VALUES (%s, %s, %s, %s, %s, %s, %s)"

		 �cursor.execute(sql, (id, firstName, lastName, subjectNo, contactNum,
salary, emailID))

		 connection.commit()

		 print("Data entered successfully.")

		

		 cursor.close()

		 connection.close()

		

		 # Function to display data from the TEACHER table

		 def displayData():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 sql = "SELECT * FROM TEACHER"

		 cursor.execute(sql)

		 results = cursor.fetchall()

		 for row in results:

Computer Science with PYTHON102

IMPRINT 1

		 print(row)

		

		 cursor.close()

		 connection.close()

		

		 # Function to update contact number of a teacher in the TEACHER table

		 def updateData():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 id = int(input("Enter Teacher ID to update: "))

		 newContactNum = input("Enter new Contact Number: ")

		

		 sql = "UPDATE TEACHER SET Contact_Num = %s WHERE ID = %s"

		 cursor.execute(sql, (newContactNum, id))

		 connection.commit()

		 print("Data updated successfully.")

		

		 cursor.close()

		 connection.close()

		

		 # Function to delete data from the TEACHER table

		 def deleteData():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 id = int(input("Enter Teacher ID to delete: "))

		

		 sql = "DELETE FROM TEACHER WHERE ID = %s"

		 cursor.execute(sql, (id,))

		 connection.commit()

		 print("Data deleted successfully.")

		

IMPRINT 1

103Computer Science with PYTHON

		 cursor.close()

		 connection.close()

		

		 # Main function to display the menu and call appropriate functions

		 def main():

		 while True:

		 print("\nMenu:")

		 print("1. ENTER Data")

		 print("2. DISPLAY Data")

		 print("3. UPDATE Data")

		 print("4. DELETE Data")

		 print("5. EXIT")

		 choice = int(input("Enter your choice: "))

		

		 if choice == 1:

		 enterData()

		 elif choice == 2:

		 displayData()

		 elif choice == 3:

		 updateData()

		 elif choice == 4:

		 deleteData()

		 elif choice == 5:

		 break

		 else:

		 print("Invalid choice. Please try again.")

		

		 if __name__ == "__main__":

		 main()

		 Notes:

		 •	� Replace 'your_username' and 'your_password' with your actual MySQL
username and password.

Computer Science with PYTHON104

IMPRINT 1

		 •	� Ensure the MySQL server is running and the SCHOOL database along with
TEACHER and SUBJECT tables exist before running the program.

		 •	� The user-defined functions enterData, displayData, updateData, and
deleteData perform the respective operations.

		 •	� The main menu loop continues to prompt the user for input until they
choose to exit by selecting option 5.

	 6.	 import pymysql
		

		 # Establish connection to the database

		 def connectToDatabase():

		 return pymysql.connect(

		 host='localhost',

		 user='your_username',

		 password='your_password',

		 database='INVENTORY'

)

		

		 # Function to accept data into the SALE table

		 def acceptData():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 billID = input("Enter Bill ID: ")

		 custName = input("Enter Customer Name: ")

		 itemPurchased = input("Enter Item Purchased: ")

		 price = float(input("Enter Price: "))

		 cgst = float(input("Enter CGST: "))

		

		 �sql = "INSERT INTO SALE (Bill_ID, Cust_Name, Item_Purchased, Price,
CGST) VALUES (%s, %s, %s, %s, %s)"

		 cursor.execute(sql, (billID, custName, itemPurchased, price, cgst))

		 connection.commit()

		 print("Data entered successfully.")

		

IMPRINT 1

105Computer Science with PYTHON

		 cursor.close()

		 connection.close()

		

		 # Function to display entire data along with total price

		 def displayData():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 �sql = "SELECT *, (Price + (CGST/100 * Price)) AS Total_Price FROM
SALE"

		 cursor.execute(sql)

		 results = cursor.fetchall()

		

		 �print("+---------+-----------+----------------+--------+------+
-----------+")

		 �print("| Bill_ID | Cust_Name | Item_Purchased | Price | CGST |
Total_Price|")

		 �print("+---------+-----------+----------------+--------+------+
-----------+")

		

		 for row in results:

		 �print("| {:<8} | {:<9} | {:<14} | {:<6} | {:<4} | {:<11}
|".format(

		 row[0], row[1], row[2], row[3], row[4], round(row[5], 2)))

		

		 �print("+---------+-----------+----------------+--------+------+
-----------+")

		

		 cursor.close()

		 connection.close()

		

		 # Function to update the price based on the Bill_ID

		 def updatePrice():

		 connection = connectToDatabase()

Computer Science with PYTHON106

IMPRINT 1

		 cursor = connection.cursor()

		

		 billID = input("Enter Bill ID to update: ")

		 newPrice = float(input("Enter new Price: "))

		

		 sql = "UPDATE SALE SET Price = %s WHERE Bill_ID = %s"

		 cursor.execute(sql, (newPrice, billID))

		 connection.commit()

		 print("Price updated successfully.")

		

		 cursor.close()

		 connection.close()

		

		 # Function to delete rows where Item_Purchased is 'Saree'

		 def deleteSaree():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 sql = "DELETE FROM SALE WHERE Item_Purchased = 'Saree'"

		 cursor.execute(sql)

		 connection.commit()

		 print("Rows with 'Saree' as Item_Purchased deleted successfully.")

		

		 cursor.close()

		 connection.close()

		

		 # Main function to display the menu and call appropriate functions

		 def main():

		 while True:

		 print("\nMenu:")

		 print("1. ACCEPT Data")

		 print("2. DISPLAY Data")

		 print("3. UPDATE Price")

IMPRINT 1

107Computer Science with PYTHON

		 print("4. DELETE 'Saree' Data")

		 print("5. EXIT")

		 choice = int(input("Enter your choice: "))

		

		 if choice == 1:

		 acceptData()

		 elif choice == 2:

		 displayData()

		 elif choice == 3:

		 updatePrice()

		 elif choice == 4:

		 deleteSaree()

		 elif choice == 5:

		 break

		 else:

		 print("Invalid choice. Please try again.")

		

		 if __name__ == "__main__":

		 main()

		 Notes:

		 •	� Replace 'your_username' and 'your_password' with your actual MySQL
username and password.

		 •	� Ensure the MySQL server is running and the INVENTORY database along
with the SALE table exists before running the program.

		 •	� The program includes user-defined functions acceptData, displayData,
updatePrice, and deleteSaree to perform the respective operations.

		 •	� The main menu loop continues to prompt the user for input until they
choose to exit by selecting option 5.

	 7.	 import pymysql
		

		 # Function to establish a connection to the database

		 def connectToDatabase():

		 return pymysql.connect(

		 host='localhost',

Computer Science with PYTHON108

IMPRINT 1

		 user='root',

		 password='abc#123',

		 database='SHIPMENTDB'

)

		

		 # Function to create the tables SUPPLIER, PRODUCT, and SHIPMENT

		 def createTables():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 cursor.execute("""

		 CREATE TABLE IF NOT EXISTS SUPPLIER (

		 SNo INT PRIMARY KEY,

		 Sname VARCHAR(255),

		 SCity VARCHAR(255)

)

		 """)

		

		 cursor.execute("""

		 CREATE TABLE IF NOT EXISTS PRODUCT (

		 PNo INT PRIMARY KEY,

		 Pname VARCHAR(255),

		 Brand VARCHAR(255),

		 City VARCHAR(255)

)

		 """)

		

		 cursor.execute("""

		 CREATE TABLE IF NOT EXISTS SHIPMENT (

		 OrderNo INT PRIMARY KEY,

		 SNo INT,

		 PNo INT,

		 Price DECIMAL(10, 2),

IMPRINT 1

109Computer Science with PYTHON

		 Quantity INT,

		 FOREIGN KEY (SNo) REFERENCES SUPPLIER(SNo),

		 FOREIGN KEY (PNo) REFERENCES PRODUCT(PNo)

)

		 """)

		

		 connection.commit()

		 cursor.close()

		 connection.close()

		

		 # Function to accept data and store it in the database

		 def acceptData():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 # Accept SUPPLIER data

		 suppliers = [

		 (101, 'Aradhaya Pvt. L', 'Mumbai'),

		 (102, 'XYZ Enterprises', 'Bangalore'),

		 (103, 'Komal Enterpris', 'Delhi'),

		 (104, 'Cloudtail', 'Patna'),

		 (105, 'PQR Enterprises', 'Uttrakhand'),

		 (106, 'Tech Solutions', 'Bangalore'),

		 (107, 'XYZ Enterprises', 'Mumbai')

]

		 �cursor.executemany("INSERT INTO SUPPLIER VALUES (%s, %s, %s)",
suppliers)

		

		 # Accept PRODUCT data

		 products = [

		 (201, 'Refrigerator', 'Whirlpool', 'Chennai'),

		 (202, 'Washing Machine', 'Samsung', 'Kolkata'),

		 (203, 'Television', 'Sony', 'Mumbai'),

Computer Science with PYTHON110

IMPRINT 1

		 (204, 'Television', 'Samsung', 'Kolkata'),

		 (205, 'Washing Machine', 'Whirlpool', 'Chennai'),

		 (206, 'Refrigerator', 'Whirlpool', 'Delhi'),

		 (207, 'Microwave Oven', 'IFB', 'Mumbai'),

		 (208, 'Microwave', 'Samsung', 'Mumbai'),

		 (209, 'Air Fryer', 'IFB', 'Chandigarh'),

		 (210, 'Air Fryer', 'Philips', 'Lucknow')

]

		 �cursor.executemany("INSERT INTO PRODUCT VALUES (%s, %s, %s, %s)",
products)

		

		 # Accept SHIPMENT data

		 shipments = [

		 (1000, 101, 201, 50000.00, 50),

		 (1001, 101, 202, 70000.00, 30),

		 (1002, 102, 202, 90000.00, 75),

		 (1003, 104, 205, 25000.00, 20),

		 (1004, 105, 205, 55000.00, 30),

		 (1005, 102, 207, 48000.00, 50),

		 (1006, 105, 210, 23000.00, 30),

		 (1007, 104, 209, 60000.00, 75),

		 (1008, 102, 208, 65000.00, 20),

		 (1009, 103, 207, 81000.00, 30),

		 (1010, 106, 204, 56000.00, 30),

		 (1011, 107, 210, 38000.00, 50),

		 (1012, 101, 201, 72000.00, 50)

]

		 �cursor.executemany("INSERT INTO SHIPMENT VALUES (%s, %s, %s, %s,
%s)", shipments)

		

		 connection.commit()

		 cursor.close()

		 connection.close()

		

IMPRINT 1

111Computer Science with PYTHON

		 # Function to retrieve and display all data from the database

		 def displayData():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 cursor.execute("SELECT * FROM SUPPLIER")

		 suppliers = cursor.fetchall()

		 print("\nSUPPLIER Table:")

		 print("+-----+-----------------+-------------+")

		 print("| SNo | Sname | SCity |")

		 print("+-----+-----------------+-------------+")

		 for row in suppliers:

		 �print("| {:<3} | {:<15} | {:<11} |".format(row[0], row[1],
row[2]))

		 print("+-----+-----------------+-------------+")

		

		 cursor.execute("SELECT * FROM PRODUCT")

		 products = cursor.fetchall()

		 print("\nPRODUCT Table:")

		 print("+-----+-----------------+-------------+------------+")

		 print("| PNo | Pname | Brand | City |")

		 print("+-----+-----------------+-------------+------------+")

		 for row in products:

		 �print("| {:<3} | {:<15} | {:<11} | {:<10} |".format(row[0],
row[1], row[2], row[3]))

		 print("+-----+-----------------+-------------+------------+")

		

		 cursor.execute("SELECT * FROM SHIPMENT")

		 shipments = cursor.fetchall()

		 print("\nSHIPMENT Table:")

		 print("+---------+-----+-----+----------+----------+")

		 print("| OrderNo | SNo | PNo | Price | Quantity |")

		 print("+---------+-----+-----+----------+----------+")

Computer Science with PYTHON112

IMPRINT 1

		 for row in shipments:

		 �print("| {:<7} | {:<3} | {:<3} | {:<8} | {:<8} |".format(row[0],
row[1], row[2], row[3], row[4]))

		 print("+---------+-----+-----+----------+----------+")

		

		 cursor.close()

		 connection.close()

		

		 # Function to generate reports

		 def generateReports():

		 connection = connectToDatabase()

		 cursor = connection.cursor()

		

		 �# Report a: Order number and name of the product supplied in each
shipment

		 cursor.execute("""

		 SELECT SHIPMENT.OrderNo, PRODUCT.Pname

		 FROM SHIPMENT

		 JOIN PRODUCT ON SHIPMENT.PNo = PRODUCT.PNo

		 """)

		 result = cursor.fetchall()

		 �print("\nReport a: Order number and name of the product supplied
in each shipment")

		 print("+---------+-----------------+")

		 print("| OrderNo | Product Name |")

		 print("+---------+-----------------+")

		 for row in result:

		 print("| {:<7} | {:<15} |".format(row[0], row[1]))

		 print("+---------+-----------------+")

		

		 # Report b: Order number of the products of Whirlpool brand

		 cursor.execute("""

		 SELECT SHIPMENT.OrderNo

		 FROM SHIPMENT

IMPRINT 1

113Computer Science with PYTHON

		 JOIN PRODUCT ON SHIPMENT.PNo = PRODUCT.PNo

		 WHERE PRODUCT.Brand = 'Whirlpool'

		 """)

		 result = cursor.fetchall()

		 print("\nReport b: Order number of the products of Whirlpool brand")

		 print("+---------+")

		 print("| OrderNo |")

		 print("+---------+")

		 for row in result:

		 print("| {:<7} |".format(row[0]))

		 print("+---------+")

		

		 �# Report c: Names of suppliers who have supplied more than two
orders

		 cursor.execute("""

		 SELECT SUPPLIER.Sname

		 FROM SUPPLIER

		 JOIN SHIPMENT ON SUPPLIER.SNo = SHIPMENT.SNo

		 GROUP BY SUPPLIER.SNo

		 HAVING COUNT(SHIPMENT.OrderNo) > 2

		 """)

		 result = cursor.fetchall()

		 �print("\nReport c: Names of suppliers who have supplied more than
two orders")

		 print("+------------------------+")

		 print("| Supplier Name |")

		 print("+------------------------+")

		 for row in result:

		 print("| {:<22} |".format(row[0]))

		 print("+------------------------+")

		

		 # Report d: Number of orders supplied by each supplier

		 cursor.execute("""

Computer Science with PYTHON114

IMPRINT 1

		 SELECT SUPPLIER.Sname, COUNT(SHIPMENT.OrderNo) AS OrderCount

		 FROM SUPPLIER

		 JOIN SHIPMENT ON SUPPLIER.SNo = SHIPMENT.SNo

		 GROUP BY SUPPLIER.SNo

		 """)

		 result = cursor.fetchall()

		 print("\nReport d: Number of orders supplied by each supplier")

		 print("+------------------------+-------------+")

		 print("| Supplier Name | Order Count |")

		 print("+------------------------+-------------+")

		 for row in result:

		 print("| {:<22} | {:<11} |".format(row[0], row[1]))

		 print("+------------------------+-------------+")

		

		 cursor.close()

		 connection.close()

		

		 # Main function to display the menu and call appropriate functions

		 def main():

		 createTables()

		 acceptData()

		

		 while True:

		 print("\nMenu:")

		 print("1. DISPLAY Data")

		 print("2. GENERATE Reports")

		 print("3. EXIT")

		 choice = int(input("Enter your choice: "))

		

		 if choice == 1:

		 displayData()

		 elif choice == 2:

		 generateReports()

IMPRINT 1

115Computer Science with PYTHON

		 elif choice == 3:

		 break

		 else:

		 print("Invalid choice. Please try again.")

		

		 if __name__ == "__main__":

		 main()

	 	 Note: Replace 'root' and 'abc#123' with the appropriate username and password for your
MySQL database. Also, ensure the MySQL server is running and accessible.

 Assertion and Reasoning Based Questions
	 1.	 a	 2.	 a

 Case-based Questions
	 1.	 import pymysql
		

		 def createConnection():

		 connection = pymysql.connect(

		 host="HOST1",

		 user="ORANGE",

		 password="education@1",

		 �database="YOUR_DATABASE_NAME" # Replace with your database
name

)

		 return connection

		

		 def createTable():

		 connection = createConnection()

		 cursor = connection.cursor()

		 cursor.execute("""

		 CREATE TABLE IF NOT EXISTS Client (

		 clientId INT PRIMARY KEY,

		 cName VARCHAR(100) NOT NULL,

		 city VARCHAR(100) NOT NULL,

Computer Science with PYTHON116

IMPRINT 1

		 contactNo VARCHAR(15)

)

		 """)

		 connection.close()

		

		 def insertClientData():

		 connection = createConnection()

		 cursor = connection.cursor()

		 clientId = int(input("Enter Client ID: "))

		 cName = input("Enter Client Name: ")

		 city = input("Enter Client City: ")

		 contactNo = input("Enter Client Contact Number: ")

		

		 �sql = "INSERT INTO Client (clientId, cName, city, contactNo) VALUES
(%s, %s, %s, %s)"

		 values = (clientId, cName, city, contactNo)

		 cursor.execute(sql, values)

		 connection.commit()

		 connection.close()

		 print("Client data inserted successfully.")

		

		 def displayClientsInDelhi():

		 connection = createConnection()

		 cursor = connection.cursor()

		 sql = "SELECT * FROM Client WHERE city = 'Delhi'"

		 cursor.execute(sql)

		 rows = cursor.fetchall()

		

		 if rows:

		 print("Clients in Delhi:")

		 for row in rows:

		 �print(f"Client ID: {row[0]}, Name: {row[1]}, City: {row[2]},
Contact No: {row[3]}")

IMPRINT 1

117Computer Science with PYTHON

		 else:

		 print("No clients found in Delhi.")

		 connection.close()

		

		 def mainMenu():

		 createTable()

		 while True:

		 print("\nMain Menu")

		 print("1. Insert Client Data")

		 print("2. Display Clients in Delhi")

		 print("3. Exit")

		 choice = input("Enter your choice: ")

		

		 if choice == '1':

		 insertClientData()

		 elif choice == '2':

		 displayClientsInDelhi()

		 elif choice == '3':

		 break

		 else:

		 print("Invalid choice. Please try again.")

		

		 if __name__ == "__main__":

		 mainMenu()

		

		 Replace YOUR_DATABASE_NAME with the actual name of the database where
the Client table will be created.

	 2.	 import pymysql
		

		 def createConnection():

		 connection = pymysql.connect(

		 host="HOST1",

		 user="ORANGE",

Computer Science with PYTHON118

IMPRINT 1

		 password="education@1",

		 database="Adventure"

)

		 return connection

		

		 def updateCityForTroupe():

		 connection = createConnection()

		 cursor = connection.cursor()

		 troupeId = input("Enter Troupe ID: ")

		 newCity = input("Enter New City: ")

		

		 sql = "UPDATE Troupe SET CITY = %s WHERE TROUPID = %s"

		 values = (newCity, troupeId)

		 cursor.execute(sql, values)

		 connection.commit()

		 connection.close()

		 print("City updated successfully for Troupe ID:", troupeId)

		

		 def main():

		 updateCityForTroupe()

		

		 if __name__ == "__main__":

		 main()

		

		 Make sure the Adventure database and Troupe table already exist with
the appropriate schema before running this program.

