Page 447 - AI Ver 3.0 class 10_Flipbook
P. 447

Feature              NumPy Array                              Python List
                  Accessibility        Requires importing NumPy                 Built-in  Python  feature  (does  not  require
                                                                                an additional package)
                  Mathematical         Supports  direct  mathematical  operations  Requires looping or applying operations to
                  Operations           on all elements                          individual elements
                  Usage                Mostly  used  for  scientific  computing,  Mainly used for data storage and
                                       numerical operations, and data analysis  management
                  Syntax               import numpy                             marks=[34,23,41,42]

                                       marks=numpy.array([34,23,41,42])

                 Creating an Array using NumPy

                 Different ways to create an array using NumPy are as follows:
                    • Creating one dimensional array:

                    [1]:  import numpy
                          rollno = numpy.array([1, 2, 3])
                          print(rollno)

                          [1 2 3]
                    • Create a sequential 1 D array with values as multiples of 10 from 10 to 100:

                    [1]:  import numpy as np
                          a = np.arange(10,101,10)
                          print(a)
                          [ 10  20  30  40  50  60  70  80  90 100]

                    • Creating one-dimensional array with 4 random values:

                    [1]:  import numpy as np
                          a = np.random.random(4)
                          print(a)
                          [0.4141628  0.1035279  0.05137008 0.98002355]


                    • Creating two-dimensional array of 3 rows and 4 columns with random integer values less than 10:

                    [1]:  import numpy as np
                          a = np.random.randint(10, size=(3,4))
                          print(a)
                          [[3 1 4 1]
                          [7 6 0 1]
                          [4 2 2 9]]

                    • Creating two-dimensional array of 3 rows and 4 columns with all ones as value:


                    [1]:  import numpy as np
                          a = np.ones((3,4))
                          print(a)
                          [[1. 1. 1. 1.]
                           [1. 1. 1. 1.]
                           [1. 1. 1. 1.]]

                                                                                    Advance Python (Practical)  445
   442   443   444   445   446   447   448   449   450   451   452