Page 216 - Ai_C10_Flipbook
P. 216

34
                           12  11  81  57  86  87  45  68

                           23  22  90  56  35  54  12  22
                           45  37  91  54  85  25  23  79      1   0  –1
                          40  78  69  58  34  74  90  97  ×    0   1   0   =
                          12  89  68  90  78  24  68  42       –1  0   1
                          34  92  61  43  66  96  23  24

                          18  56  41  24  56  45  44  66
                          19  67  61  77  23  99  77  23

                                 Image Matrix                 Kernel Matrix        Convoluted Matrix/Desired image
                                     A                             B                           C


                            Task                                                       21 st  Century   #Critical Thinking
                                                                                           Skills


                Use the given input image matrix and kernel matrix of 3×3 to generate the desired image output matrix:

                                          150  0  255 240 190  25  89  255
                                          100  79  25  0  200 255  67  100
                                          155 145  13  20  0  12  45   0         –1  0  –1
                                          100 175  0   25  25  15  0   0    ×    0  –1  0
                                          120 156 255  0   78  56  23  0         –1  0  –1

                                          115 113  25  90  0  80  56  155
                                          135 190 115 116 178  0  145 165
                                          123 255 255  0  255 255 255  0
                Fill in the blanks in the output matrix by using the above two-image and kernel matrix.





















              To  better understand how the convolution operation works, let’s  build  a theory for the convolution  operator
              by experimenting with it using an online application. This hands-on approach will help us grasp its real-world
              functionality and potential.

              Before we go into the details of theory for the convolution operator let us first experience it using an online
              application.
               Step 1     Visit the https://setosa.io/ev/image-kernels/ link.



                    214     Artificial Intelligence Play (Ver 1.0)-X
   211   212   213   214   215   216   217   218   219   220   221