Page 49 - Computer Science Class 11 Without Functions
P. 49
7 3 2
↓ ↓ ↓
111 011 010
(732) = (111011010) 2
8
i. (101011100) to hexadecimal
2
added three 0s
0 0 0 1 0 1 0 1 1 1 0 0
1 5 C
(101011100) = (15C)
2 16
j. (F31) to binary
16
F 3 1
↓ ↓ ↓
1111 0011 0001
(F31) = (111100110001) 2
16
k. (474) to hexadecimal
8
Step1: Octal to Binary
4 7 4
↓ ↓ ↓
100 111 100
(100111100) 2
Step2: Binary to hexadecimal
0 0 0 1 0 0 1 1 1 1 0 0
1 3 C
= (13C) 16
Therefore (474) = (13C)
8 16
l. (C8E) to octal
16
Step1: Hexadecimal to Binary
C 8 E
↓ ↓ ↓
1100 1000 1110
(C8E) = (110010001110) 2
16
Step2: Binary to octal
1 1 0 0 1 0 0 0 1 1 1 0
6 2 1 6
= (6216) 8
Therefore (C8E) = (6216)
16 8
2.5.2 Fractional Numbers
In the previous section, we have discussed how to change the representation of a positive integer from one
number system to another. Let us now study the conversion of fractional numbers from one number system to
another.
Number Systems and Encoding Schemes 47

