Page 12 - Computer Genius Class 07
P. 12
Octal Number System
The octal num er system consists o eight digits rom to . ence the ase o octal num er system
is . n this system the position o each digit represents a po er o . Any digit in this system
is al ays less than . Octal num er system is used as a shorthand representation o long inary
num ers. The num er 1 is not alid in this num er system as is not a alid digit.
Hexadecimal Number System
The he adecimal num er system consists o 1 digits rom to and A to F. The letters A to F represent
decimal num ers rom 1 to 1 . The ase o this num er system is 1 . ach digit position in
he adecimal num er system represents a po er o 1 . For e ample the num er is a alid
1
he adecimal num er. t is different rom hich is se en hundred and si ty our. This num er
1
system pro ides shortcut method to represent long inary num ers.
Decimal to Binary Conversion
To con ert a decimal num er into a inary num er ollo these steps
Divide the decimal number by 2 (the base of the binary number system).
Note down the quotient and the remainder.
Divide the quotient obtained again by 2 and note down the resulting quotient and
remainder.
Repeat the procedure till you reach a quotient less than 2.
List the last quotient and all the remainders (moving from bottom to top). You will get
your binary number.
oo at the gi en e amples to understand the con ersion etter.
Example 1: on ert the decimal num er 2 i.e. 2 to inary.
1
2 2
2 1
2 1
2
1 1
Start listing the last uotient and
all the remainders rom here.
The inary e ui alent o 2 is 11 1
1
n other ords 2 11 1
1 2
10 Computer Genius-VII

