Page 39 - Informatics_Practices_Fliipbook_Class12
P. 39

output of the above code is:
                  0    1000
                  1    8000
                  dtype: int64
                  What is the correct statement for  the above  output  in  the following statement-1?
                  a.  d=L*3                b. data=L**3           c. L*3                d. [10,20]**3
             Ans.  b. data=L**3
               7.  Which attribute is used with Series to count the total number of NaN values?                [2022]
                  a.  size                 b. len                 c. count              d. count total
             Ans.  c. count

               8.  What will be the output of the following code?                                              [2022]
                  import pandas as pd
                  import numpy
                  s=pd.Series (data=[31,54,34,89,12,23],dtype=numpy.int)
                  print(s>50)

                                      (a)             (b)               (c)             (d)

                                   0 False           1 54             0 31            1 True
                                   1 True            3 89             1 54            3 True

                                   2 False         dtype:int64        2 34            dtype:bool
                                   3 True                             3 89

                                   4 False                            4 12
                                   5 False                            5 23

                                  dtype: bool                       dtype: int64


              Ans.        (d)
                        1 True
                        3 True
                        dtype:bool








               9.  Consider the following Series in Python:                                                    [2022]
                  data = pd.Series([5, 2, 3,7), index=['a', 'b', 'c', 'd'])
                  Which statement will display all odd values
                  a.  print(data%2==0)
                  b.  print(data(data%2 ! = 0))
                  c.  print(data mod 2! = 0)
                  d.  print(data[data%2!=0])
             Ans.  d. print(data[data%2!=0])




                                                                                      Data Handling using Pandas  25
   34   35   36   37   38   39   40   41   42   43   44