Page 111 - Informatics_Practices_Fliipbook_Class12
P. 111

Further, we use the highest values in the lists time and velocity to define range of values for the ticks (Fig 3.8).

             >>> import matplotlib.pyplot as plt
             >>> time = [2, 4, 6, 8, 10]
             >>> velocity = [30, 40, 60, 35, 10]
             >>> plt.plot(time, velocity, 'r*-.', linewidth = 1.5, markersize = 15, markerfacecolor = 'y',
                 markeredgecolor = 'b', markeredgewidth = 1)
             >>> plt.xlabel('Time')
             >>> plt.ylabel('Velocity')
             >>> plt.title('Time vs. Velocity')
             >>> plt.xticks(range(0, max(time), 2))
             >>> plt.yticks(range(0, max(velocity), 5))
             >>> plt.grid()
             >>> plt.show()





























                                                      Fig 3.8: Time vs. Velocity

            The statement plt.xticks(range(0, max(time), 2)), sets the tick positions on the x-axis at intervals of 2
            units, ranging from 0 to 10. Similarly, the statement plt.yticks(range(0, max(velocity), 5)), sets the
            tick positions on the y-axis at intervals of 5 units, ranging from 0 to 60. Finally, the statement plt.grid(), adds a
            grid to the plot by drawing the horizontal and vertical line segments along the ticks.


                  To enhance the readability of a graph, the plt module allows us to display a rectangular grid using the method
                  plt.grid().
                  The ticks on the x-axis mark the positions of the vertical lines of the grid. The ticks on the y-axis mark the positions of
                  the horizontal lines of the grid. The position of ticks is typically described using a sequence (using a list, range(),
                  etc.) provided as input to methods xticks() and yticks().




             C T  02     Modify the above code snippet to draw the above graph using the line segments with dotted
                         lines.











                                                                                              Data Visualization  97
   106   107   108   109   110   111   112   113   114   115   116